Glaciares de Chile
- Glaciares del Volcán Melimoyu
- Glaciares del Nevado de Queulat
- Glaciares del Volcán Mentolat
- Glaciares del Volcán Cay
- Glaciares del Volcán Macá
- Glaciares del Volcán Hudson
- Glaciar Erasmo
- Glaciar San Rafael
- Glaciar San Quintín
- Campo de Hielo Norte
- Glaciar Nef
- Glaciar Colonia
- Lago Cachet II
- Glaciar Steffen
- Glaciares del Monte San Lorenzo
- Glaciar Jorge Montt
- Glaciar Lucía
- Glaciar Los Moscos
- Glaciar Bernardo
- Glaciar O’Higgins
- Glaciar Chico
- Campo de Hielo Sur
- Campo de Hielo Sur
- Glaciar Témpanos
- Glaciar Pío XI
- Glaciar Viedma
- Glaciar Perito Moreno
- Glaciar Dickson
- Glaciar Olvidado
- Glaciar Grey
- Glaciar Amalia
- Glaciar Pingo
- Glaciar Tyndall
- Glaciar Balmaceda
- Isla Desolación
- Glaciares de la Isla Santa Inés
- Seno Gabriel
- Glaciar Schiaparelli
- Glaciar Marinelli
- Fiordo Parry
- Cordillera Darwin
- Glaciar Garibaldi
- Glaciar Roncagli
- Glaciares Isla Hoste
Antártica
“Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica"
Napoleoni, F., S. Jamieson, N., Ross, M., Bentley, A., Rivera, A., Smith, M., Siegert, G., Paxman, G., Gacitúa, A., Uribe, R., Zamora, A., Brisbourne and D. Vaughan (2020): The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, 2020.
Resumen / Abstract.
Subglacial water plays an important role in ice sheet dynamics and stability. Subglacial lakes are often located at the onset of ice streams and have been hypothesized to enhance ice flow downstream by lubricating the ice-bed interface. The most recent subglacial-lake inventory of Antarctica mapped nearly 400 lakes, of which near 14% are found in West Antarctica. Despite the potential importance of subglacial water for ice dynamics, there is a lack of detailed subglacial water characterization in West Antarctica. Using radio echo sounding data, we analyse the ice bed interface to detect subglacial lakes. We report 33 previously uncharted subglacial lakes and present a systematic analysis of their physical properties. This represents a 40% increase in subglacial lakes in West Antarctica. Additionally, a new digital elevation model of basal topography of the Ellsworth Subglacial Highlands was built and used to create hydropotential model to simulate the subglacial hydrological network. This allows us to characterize basal hydrology, determine subglacial water catchments and assess their connectivity. We show that the simulated subglacial hydrological catchments of the Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier do not correspond to their ice surface catchments.