Glaciares de Chile
- Glaciares del Volcán Melimoyu
- Glaciares del Nevado de Queulat
- Glaciares del Volcán Mentolat
- Glaciares del Volcán Cay
- Glaciares del Volcán Macá
- Glaciares del Volcán Hudson
- Glaciar Erasmo
- Glaciar San Rafael
- Glaciar San Quintín
- Campo de Hielo Norte
- Glaciar Nef
- Glaciar Colonia
- Lago Cachet II
- Glaciar Steffen
- Glaciares del Monte San Lorenzo
- Glaciar Jorge Montt
- Glaciar Lucía
- Glaciar Los Moscos
- Glaciar Bernardo
- Glaciar O’Higgins
- Glaciar Chico
- Campo de Hielo Sur
- Campo de Hielo Sur
- Glaciar Témpanos
- Glaciar Pío XI
- Glaciar Viedma
- Glaciar Perito Moreno
- Glaciar Dickson
- Glaciar Olvidado
- Glaciar Grey
- Glaciar Amalia
- Glaciar Pingo
- Glaciar Tyndall
- Glaciar Balmaceda
- Isla Desolación
- Glaciares de la Isla Santa Inés
- Seno Gabriel
- Glaciar Schiaparelli
- Glaciar Marinelli
- Fiordo Parry
- Cordillera Darwin
- Glaciar Garibaldi
- Glaciar Roncagli
- Glaciares Isla Hoste
Antártica
"A low power consumption radar system for measuring ice thickness and snow/firn accumulation in Antarctica"
Uribe, J.; Zamora, R.; Gacitúa, G.; Rivera, A. & Ulloa, D. (2014) : “A low power consumption radar system for measuring ice thickness and snow/firn accumulation in Antarctica” Annals of Glaciology, 55(67), 39-48.
Resumen / Abstract.
In order to measure total ice thickness and surface snow accumulation in Antarctica, we have designed and built a surveying system comprising two types of radar. This system is aimed at having low power consumption, low weight/volume and low construction cost. The system has a pulse-compression radar to measure ice thickness, and a frequency-modulated continuous wave (FM-CW) radar designed to measure hundreds of meters of surface snow/firn layers with high resolution. The pulse-compression radar operates at 155 MHz, 20MHz of bandwidth; and the FM-CW radar operates from 550 to 900 MHz. The system was tested in December 2010 at Union Glacier (79º46’S, 83º24’W), West Antarctica, during an oversnow campaign, where Union and other nearby glaciers (Schanz, Schneider and Balish) were covered through 82km of track. Ice thickness of 1540m and snow/firn thickness of 120m were detected in the area. The collected data allowed the subglacial topography, internal ice structure, isochronous and the snow/ice boundary layer to be detected. Here we describe radar electronics, their main features and some of the results obtained during the first test campaign. Further improvements will focus on the adaptation of the system to be implemented on board airplane platforms.