Glaciares de Chile
- Glaciares del Volcán Melimoyu
- Glaciares del Nevado de Queulat
- Glaciares del Volcán Mentolat
- Glaciares del Volcán Cay
- Glaciares del Volcán Macá
- Glaciares del Volcán Hudson
- Glaciar Erasmo
- Glaciar San Rafael
- Glaciar San Quintín
- Campo de Hielo Norte
- Glaciar Nef
- Glaciar Colonia
- Lago Cachet II
- Glaciar Steffen
- Glaciares del Monte San Lorenzo
- Glaciar Jorge Montt
- Glaciar Lucía
- Glaciar Los Moscos
- Glaciar Bernardo
- Glaciar O’Higgins
- Glaciar Chico
- Campo de Hielo Sur
- Campo de Hielo Sur
- Glaciar Témpanos
- Glaciar Pío XI
- Glaciar Viedma
- Glaciar Perito Moreno
- Glaciar Dickson
- Glaciar Olvidado
- Glaciar Grey
- Glaciar Amalia
- Glaciar Pingo
- Glaciar Tyndall
- Glaciar Balmaceda
- Isla Desolación
- Glaciares de la Isla Santa Inés
- Seno Gabriel
- Glaciar Schiaparelli
- Glaciar Marinelli
- Fiordo Parry
- Cordillera Darwin
- Glaciar Garibaldi
- Glaciar Roncagli
- Glaciares Isla Hoste
Antártica
"Weak properties and robustness of t-Hill estimators"
Jordanova, P.; Fabian, Z.; Hermann, P.; Strelec, L.; Rivera, A.; Girard, S.; Torres, S. and Stehlik, M. (2016) : “Weak properties and robustness of t-Hill estimators” Extremes: Statistical Theory and Applications in Science, Engineering and Economics, 19:591–626 DOI 10.1007/s10687-016-0256-2.
Resumen / Abstract.
We describe a novel method of heavy tails estimation based on transformed score (t-score). Based on a new score moment method we derive the t-Hill estimator, which estimates the extreme value index of a distribution function with regularly varying tail. t-Hill estimator is distribution sensitive, thus it differs in e.g. Pareto and log-gamma case. Here, we study both forms of the estimator, i.e. t-Hill and t-lgHill.