
OPTICAL FLOW APPLIED TO TIME-LAPSE IMAGE SERIES TO ESTIMATE 
GLACIER MOTION IN THE SOUTHERN PATAGONIA ICE FIELD 

 
E. Lannuttia, M. G. Lenzanoa*, C. Tothb, L. Lenzanoa, A. Riverac 

 
a Depto. de Geomática. IANIGLA-CCT, CONICET, Av. Ruiz Leal s/n. Mendoza, Argentina – (elannutti, mlenzano, 

llenzano,)@mendozaconicet.gob.ar 
b Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Ohio, USA - toth.2@osu.edu  

c Centro de Estudios Científicos Chile, Valdivia, Chile - arivera@cecs.cl  
 

Commission VI, WG VI/4 
 
 

KEY WORDS: optical flow, time-lapse imagery, motion detection, glacier 
 
 
ABSTRACT: 
 
In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former 
investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on 
extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying 
time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass 
motion. Several studies in computer vision and image processing community have used this method to detect large displacements. 
Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South 
Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 
hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was 
applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that 
do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the 
terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show 
random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier 
motion during one year, providing accurate and reliable motion data for subsequent analysis. 
 

1. INTRODUCTION 

Data acquisition methods on earth observation and monitoring 
applications, have seen great technological advancements in 
recent years, such as the introduction of airborne and terrestrial 
LiDAR (Light Detection and Ranging) and a wide variety of 
satellite sensors with varying geometric resolutions that can be 
combined with other techniques of data acquisition to 
substantially improve the quality of the observations (Paul et al., 
2009). As a consequence, remote sensing techniques represent 
nowadays an attractive approach to study glaciers, where the 
main advantage lies in providing a more practical and 
economical alternative compared to field measurements. 
 
Glacier changes have been surveyed with a variety of methods 
since the mid-nineteenth century. The optical images have been 
the most important types of imagery to monitor the glaciers 
because they provided different spatial resolutions for mapping 
glacier changes/dynamics, even at present. Aerial and terrestrial 
photogrammetry has become a widely used technique to map 
rough and complex glacier topographies. Thus, time-lapse 
imagery provides high temporal frequency and high spatial 
resolution over a long period of time, although it may be applied 
in reduced areas.  
 
The study of glacier dynamics requires the detail mapping of 
surface velocities. Ice flow velocities vary along the glacier, 
following complex patterns defined by stress and strain rate 
distributions. In order to map these velocities, several methods 
have been used, including discrete surveys, and spatially 
distributed methods resulting in irregular or regular distribution 
grid points. In order to obtain a dense and accurate grid of ice 
velocities, a wide range of techniques of digital image 
processing have been proposed, including in the early 80’s, the 

Image pyramids technique able to perform image blending 
(Szeliski, 2010). In parallel, coarse-to-fine strategies were also 
developed, such as intensity-based optical flow algorithms, 
among others.  
 
The optical flow extracted from imagery is the result of the 
apparent movement pattern between objects, caused by either 
relative (deformation) or absolute movements. Estimating 
correspondence between pairs of points in two images remains 
one of the fundamental computational challenges in Computer 
Vision (Wedel et al., 2009). The objective of motion estimation 
is to compute an independent estimate of motion for each pixel, 
which is generally known as optical flow (Szeliski, 2010). The 
majority of today’s methods strongly resemble the original 
formulation of Horn and Schunck (HS) (Horn and Schunck, 
1981). In spite of the existence of a variety of optical flow 
techniques, the majority of the algorithms concern small 
displacements and only a few procedures have been developed 
to detect large displacements, such as those occurring with 
glaciers; note that large displacement is defined with respect to 
the image acquisition rate. The Large Displacement Optical 
Flow (LDOF) method (Brox et al., 2004, Brox and Malik, 2011) 
offers an interesting alternative to estimate large displacement 
between image sequences, and is based on a solid numerical 
method that includes a coarse-to-fine strategy using the so-
called warping technique, and implements the non-linearized 
optical flow constraint for image registration. The constancy 
assumption of the gradient makes this method robust to grey 
values changes. Finally, the descriptor matching and the discrete 
optimizations provide subpixel accuracy. 
 
Few studies of ice motion have been carried out using optical 
flow algorithm (Vogel et al., 2012; Bown, 2015). Thus, in this 
work, we propose the LDOF algorithm to estimate the motion 



 

of a glacier by terrestrial monoscopic time-lapse image series 
acquired by non-metric professional DSLR camera systems. 
The test was carried out at the Viedma glacier, Southern 
Patagonia Icefield (SPI), Argentina. This study aims to obtain 
efficient solutions at pixel level and determine ice velocities in 
the terminal part of the glacier. The outline of this paper is as 
follows: Section 2 provides a detailed description of the study 
area and data collection. Section 3 reviews the methodology 
proposed. Section 4 presents the results with analysis, and 
Section 5 provides the conclusion.  
 

2. TEST AND DATA ACQUISITION 

The South Patagonia Ice field (SPI) is located in South 
America, Argentina and Chile, covering an area of 13,000 km2 
with an average length of approximately 30-40 km at a mean 
altitude of 1,191 m ASL (Aniya and others, 1996). Presently, 
after Antarctica and Greenland, it is the third largest reservoir of 
fresh water on continental shelves. The Viedma glacier is 
located at 49° 31’ S, 72° 59’ W, Parque Nacional Los Glaciares, 
South Patagonia Icefield, Santa Cruz, Argentina (Fig. 1). This is 
an important calving glacier in the region covering an area of 
945 km2 (Aniya et al., 1996). The glacier was selected for this 
study due to the availability of several studies on the surface 
changes, carried out over the last 30 years (Skvarca et al., 1995, 
Aniya et al., 1996; Lopez et al., 2010; Rivero et al., 2013). 
 

 
Figure 1. Map of the study area. 

 
To support the field image acquisition, an integrated data 
acquisition system was built around the CANON EOS Mark II 
DSLR camera; pixel size: 7.2 μ, objective focal length: 50 mm, 
and FOV: 46°. The camera was calibrated several times, 
initially by the United States Geological Survey (USGS), and 
prior to field deployment. The system is powered by one 
12V/7Ah lead acid battery, charged by two 38W solar panels. 
The camera with the supporting electronic systems is protected 
by a waterproof enclosure, with a viewing port and a visor to 
reduce reflections. An inspection port in the rear of the 
enclosure provides visual access to monitor status. The image 
acquisition system was installed on a rigid metal structure, fixed 
to outcrops of the South margin of Viedma Glacier. The 
location provides a good side view of the curve of Viedma 
Glacier see Fig. 2. The image acquisition started on April 17, 
2014, and one picture was captured at 12 pm local time every 
day until April, 8 2015 (total of 356 images). 
 

3. PROPOSED APPROACH 

The overall processing workflow is shown in Fig. 3. Except for 
the image resizing, all the subsequent processes were made in 

Matlab. In order to lower computational costs, the original sizes 
of the images were reduced based on the Region of Interest 
(ROI), the glacier area, Fig. 4 a and b show the elimination of 
the sky and mountain range at the top of the photo. Note that, 
changing objects, such as clouds and snow may affect the 
movement detection in the LDOF algorithm. Next, the Motion 
Detection Processes (MDP) method is executed, including the 
Correlated Image Filter (CIF) process and the LDOF 
computation that provides the uncertainty estimation. 
 

Figure 2. System of the camera.  
 
3.1 Correlated Image Filter (CIF) 

We implemented the CIF processes with the assumptions that 
optical flow brightness is constant over time, and nearby points 
in the image move in a similar way (Schalkoff, 1989). Thus, 
important changes in lighting should be avoided to assume that 
changes of image irradiance are only caused by the image 
sequence (Klette, 2014). This generally involves the summation 
of color differences between corresponding pixels over the 
image. In our study case, the daily changes in solar radiation 
and the seasonal snow cover were corrected by the CIF. 
 
First, at pair of possible images are selected, IMn (Master) and 
ISn+1 (Slave), both of which are separated into the three RGB 
bands in order to perform a correlation for each channel 
separately for both images. The mean correlation value of each 
of the three channels is analyzed. If the mean value is equal or 
greater than 0.94, then the pair remains selected. Otherwise, the 
initial threshold of 0.94 is iteratively reduced in 0.005 steps and 
a new correlation between the IMn and the ISn+2 is computed 
until the pair of images surpasses the descending correlation 
threshold. The reason to apply a variable correlation threshold is 
to avoid correlation between images that are too separated in 
time, as the objects may change substantially due to the 
glacier’s movement. This sequence is repeated n times for all 
the images, where ISn+m becomes IMn+m , making the correlation 
between the latter and the ISn+m+1. As a result of this process, 
correlated pairs of images are obtained throughout the course of 
the entire sequence, where the changes in luminosity are 
minimized, and each selected pair is ready for the LDOF to be 
calculated. 



 

 

Figure 3. Workflow of the present study.
 

Figure 5 shows the result of the CIF. The blue line describes the 
correlation value for the mean value of the three RGB bands for 
the n pair of resulting images from each search. The black line 
corresponds to the threshold of the iterative correlation test that 
decreases until it coincides with the RGB correlation value and 
hence passes the test. The red points show the 127 selected 
images by the CIF, i.e., 36% of the images passed the test. The 
lower correlation value for the test was 0.85, and corresponds to 
the period between images 40 and 60, coinciding with a major 
snow storm that lasted 20 days. 
 

 
Figure 4. Original and ROI reduced image. 

 

3.2 Optical Flow (LDOF) 

We use the LDOF Matlab implementation developed by Brox et 
al. (2004), Brox and Malik (2011). After having done tests with 
other optical flow algorithms, the LDOF was the one that 
produced the best results in the motion estimation. This 
algorithm implements a coarse-to-fine variational framework 
between two images I1 and I2, and computes the displacement 
field w(x)= (u,v) by minimizing the functional energy E(w) 
using the following model (Eq. 1): 

 
  

                              ,                           (1) 
 

Where  ,   and    and  are tuning parameters which can be 
determined manually according to qualitative evidence on a  
large variety of videos, or can be estimated automatically from 
ground truth data. w1 is an auxiliary variable (Brox and Malik, 
2011). 

 
Equation 1, involves in the first and second terms the common 
assumption that corresponding points should have the same 
gray value or color and gradient constancy. The third term 
emphasizes the strength and importance of regularity constraints 
in optical flow estimation by a robust smoothness. The last two 
terms combine descriptor matching with the variational model 
and its coarse-to-fine optimization. The descriptor matching 
method is based on densely computed Histogram of Oriented 
Gradients (HOG). Each gradient histogram comprises 15 
different orientations and is computed in a 7x7 neighborhood. 
The method with changing resolutions is performed by dividing 
the original problem into a sequence of sub-problems at 
different levels of resolution. Using image pyramid, the 
transitions between levels to resolve the Euler-Lagrange 
equations by iterations by smoothing. 

A

B



 

In the first place, results were evaluated in a qualitative manner, 
where the color-coded flow field has a meaning associated with 
the physical variable of study, which, in this case, is the 
movement of the glacier. In accordance with Streinbruecker et 
al. (2009), we checked the consistency of the flow-field by 
reconstructing the first of the two frames using the second frame 
and the estimated motion field w according to (Eq. 2): 

 
                                                          (2) 

 
If the resultant flow is adequate, then the reconstruction of    
has to be identical to the . In order to estimate the error, we 
calculated the absolute difference between the pair of images to 
estimate the final error by computing the mean of each pixel, 
throughout the whole sequence. 

 

 
Figure 5. Results of CIF processes, 127 images were selected. 

 
 

4. RESULTS: MOTION DETECTION PROCESSES 

In general, ice flow velocities on a valley glacier cross section 
have maximum values at the centre of the valley and go down to 
a minimum at the margins. Along the valley, ice velocities 
magnitudes varies longitudinally depending on several factors, 
such as surface slope, mass balance distribution and, for the 
main aim of this paper, on the glacier front conditions. On 
calving glaciers, the velocities can reach a maximum at the 
glacier front, due to the pulling effect of high calving rates. 
These high rates can be enhanced when near buoyancy 
conditions at the front are reached by a glacier calving into deep 
waters (Rivera et al, 2012). Very little is known about the ice 
flow velocities near the front of Viedma glacier, and about the 
ice-lake interactions taking place in this place. In order to better 
understand the velocity field at the lower end of the glacier, ice 
velocities were obtained by means of the vector field flow based 
upon 354 photographs obtained from a fixed camera installed 
near Viedma glacier ice front. Figure 6 shows the resulting 
velocities pictured in red for the fast flow) area, mainly 
concentrated at the central part, and in blue for the slowly 
moving ice areas, mainly located toward the margins. This 
pattern is very consistent with the expected ice flow 
acceleration toward the glacier front central part, and with slow 
moving ice near the margins.  
 
This near front acceleration has been previously described for 
other calving glaciers in Patagonia (Sakakibara et al., 2014), 
where calving is driven by water depths near the front. In 
Viedma glacier, this is confirmed by the recently surveyed 
bathymetry of the lake, where up to 571 m water depths were 
detected. Note that, since April 2014 to March 2016 the central 
part of the glacier front retreated near 800 m as detected by 
comparing satellite images.  

 
 

 
Figure 6. Color flow vectors, their magnitude are blue=slow flow and red=fast flow. 

 



 

Figure 7 shows the mean error (blue) and the standard deviation 
(black) in each image pair and to the entire time-lapse sequence, 
where the mean error is 3.7 ±5.7 in pixels. The biggest errors 
correspond to periods of large lighting changes, such as shown               

in the 10, 21 and 24 pairs. These changes are related to the 
presence of snow cover and no uniform melting on the glacier 
surface as mentioned Vogel et al. (2012). 
 
 

 

 
Figure 7. Mean Error and Standard deviation distribution for the images pairs processed by LDOF. 

 
 
Figures 8A and B show the reconstructed errors for two 
examples. The top frames show the photos that define the image 
pair for the LDOF is computed. Figure 8A shows an example of 
the error in the case of changing lighting conditions, resulting in 
significant errors in the computation of LDOF. Below the left 
image, the results of the LDOF are shown with color-coding for 
better visualization (Liu et al. 2010). Each pixel symbolizes a 
vector where the magnitude and orientation are function of the 
tonality and saturation of the pixel value. Below the right image, 
the error reconstruction is shown. The biggest errors are related 
to the presence of clouds, such as in the lower area that can be 
associated to shadows in the crevasses of the glacier, and the 
presence of changes in snow cover. In contrast, Figure 8B 
shows an example with good lighting conditions where the error 
remained low over the entire area. Note the interesting situation 
in the middle of the frame, where the presence of people is 
observed, clearly indicating the ability of the LDOF to detect 
small changes with high precision.  
 
In the image pair computations, yielding significant errors, we 
were able to easily identify the situation due to the fact that the 
movement of the glacier is lower than the motion recorded by 
the disappearance of the objects between the images that form 
the pair. Thus, we have demonstrated that the proposed method 
with respect to changes in brightness between the images, good 
results with small errors can be obtained. 
 
5. CONCLUSIONS 

In this work, we have applied dense optical flow field methods 
to estimate with high precision glacier movement. The proposed 
methods of MDP integrated by CIF and LDOF algorithms 
worked very well in the detection of the movement of Viedma 
glacier. The used approach starts with the ROIs selection aiming  
 

 
 
to decrease the computational time, and improving the results 
by eliminating zones that may only introduced noise. In natural  
environments, such as glaciers, there are a continuously 
changing lighting due to the presence of clouds, snow cover, 
and objects that appear or disappear, resulting in variations of 
radiometric conditions (brightness) in the photos affecting all 
the subsequent processes. Thus, the developed CIF proved to be 
essential to the LDOF algorithm. Thanks to this, the 
optimization and improvement of the brightness changes 
resulted in a better performance. Though only 36% of the 
images passed the applied test, they were enough for estimating 
the motion of Viedma glacier.  
 
In our tests, the combination of terrestrial time-lapse data 
collection and the efficient LDOF solution at sub-pixel level 
accuracy provided a useful solution to detect the large daily 
changes. The estimation error was evaluated qualitatively and 
quantitatively, where the error reconstruction was computed and 
yielded a mean value of 3.7 ±5.7 pixel. These values are related 
to the ability of LDOF to detect small structures changes 
indicating ice motion. Although there are few examples of 
optical flow algorithms applied for detecting ice velocities, we 
have been able to demonstrate the capabilities of LDOF for this 
purpose.  The resulting velocities are consistent with the 
expected ice flow in a calving glacier with high velocities near 
the ice front.  
 
Future work will focus on studying the relationship between the 
three-dimensional motion of objects and observers and the 
characteristics of the optical flow field. It will be relevant to 
demonstrate the important factors influencing changes in optical 
flow over the image from a not planar surface. This technique 
will help to better quantify the glacier dynamics. 
 



 

 
 

 
 

Figure 8. The top frames show the image pair selected to compute the LDOF. Left down shows the flow field estimated with color-
coding for a better visualization. Right down show the error reconstruction for the pair. A. An example of changing lighting 

conditions, and the mismatch of the glacier motion is denoted. B. An example with good lighting conditions, although the glacier has 
a large displacement is correctly matched. 
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