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A B S T R A C T

We show how a dynamical system given by a t-score function for some class of monotonic data

transformations generates consistent extreme value estimators. The variation of their values increases

the uncertainty of proper assessment of climate change. Two important examples illustrate the

methodology: mass balance measurements on Guanaco glacier, Chile, and extreme snow loads in

Slovakia. We experience singular learning of the transitions in ecosystems.
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1. Introduction

In the past several decades scientific effort has been focused on
studying and understanding global climate changes. The effect of
climatic changes has become more and more visible and in many
regions of the world these changes are represented by increasing of
weather extremes (Chan et al., 1873; Coumou and Rahmstorf,
2012; Klein Tank and Können, 2003).

All ecosystems (Methan (Sabolova et al., 2015), Guanaco
Glacier (Jordanova et al., 2016), Snow extremes (Stehlı́k et al.,
2015)) are oscillating. Decomposition to deterministic, stochastic
and chaotic part have been studied by Stehlı́k et al. (2016). We can
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understand contributions to oscillations in at least three following
ways:

(1) Extreme Value Index (EVI) j oscillates around 0 (it can have
positive, negative or zero values). As Penalva et al. (2016)
pointed out, difficulties may rise with the ‘‘Regularity
conditions’’ for the maximum likelihood (ML) estimation
(Smith, 1985), it is shown that the usual property of
asymptotic normality holds provided the extreme value
parameter j is larger than �0.5. For all environments we
can consider j > �1 (Penalva et al., 2016). Recently, Zhou
(2009, 2010) showed that the ML estimators verify the
property of asymptotic normality for j > �1. The Second
Order Regularity condition (SOC) can be difficult to be checked
(or even satisfied) in practical application. E.g. if the observed
random variable (r.v.) is a power of Uniform or has power law
behavior at the finite right end point (see Example 3.3.15 and
3.3.16, page 137, Embrechts et al., 1987), there is not unique
SOC parameter r.
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1 E.g. for b = 1 (Hill or MLE estimator) h̃ðxÞ ¼ �ulnlnxþconst., x > 1 is the example

of h which can be expressed in terms of elementary functions.
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(2) Aside of (1), the consistent estimators of tail parameters can be
built up upon t-scores (Jordanova et al., 2016). The parameters
of harmonic mean estimators (HME) are consisting dynamical
system which can surprisingly always find a monotonic
representing data function (t-score function) h. This process
contributes to deterministic dynamics of Stehlı́k et al. (2016).

(3) The use of Negative t-Hill(n-t-Hill) for estimation of the
EVI index j < 0) can give several limiting behaviors, however,
limits can be given by symmetric (normal) or classical
(Weibull) distributions, which both are special cases of
generalized gamma distribution (ggd), see Stehlı́k (2008).

The paper is organized as follows. In the next session we study
autonomous system of t-score functions. In Section 3 we study
mass balance measurements from Guanaco glacier and we show
that both negative and positive EVIs are obtained. In Section 4 we
study the extremal snow loads in Slovakia, again receiving both
negative and positive EVIs. To maintain the readability of the
manuscript we put technicalities to Appendix.

2. Dynamical systems of t-score functions

The transformation-based score (Fabián, 2001; Stehlı́k et al.,
2010) or shortly the t-score for the density f is defined as

Thðx; uÞ ¼ � 1

f ðx; uÞ
d

dx

1

h0ðxÞ f ðx; uÞ
� �

:

It expresses a relative change of a basic component of the density,
i.e., density divided by the Jacobian of mapping h. The t-score
is a suitable function for using the generalized moment method
for the estimation of parameters of heavy-tailed distributions. Let
X1, . . ., Xn be independent identically distributed (i.i.d) sample from
F with probability density function (p.d.f.) f. The parametric version
of the so-called t-mean, which can be considered as a measure of
central tendency of distributions, yields the moment estimation
equations for u in the form

1

n

Xn

i¼1

TðXi; uÞ ¼ 0:

The solution û is strongly consistent and asymptotically normal
(see Fabián, 2001). For t-Hill estimator (Fabián and Stehlı́k, 2009),
we have bounded score

Sðx; uÞ ¼ T h̃ðx; uÞ ¼ u 1� u þ 1

ux

� �
and for generalized t-Hill estimator (Beran et al., 2014) (Pareto
distribution and h̃ðxÞ ¼ lnðx�1Þ; x > 1), we have the score

Sðx; u; bÞ ¼
u 1� u þ b�1

uxb�1

� �
; for b 6¼ 1;

u
1

u
�lnx

� �
; for b ¼ 1:

8>><>>: (1)

where b > 0 is tuning parameter. For b = 2 we obtain t-Hill, with
‘‘typical’’ transformation of the support of the distribution (1, 1) to
the whole real line (�1, 1) is h̃ðxÞ ¼ lnðx�1Þ; x > 1. Here an
important inverse problem arises. For a given score S̃, does there exist
one or several sufficiently smooth functions h such that equation

Th ¼ S̃ (2)

holds? Which qualitative properties do they posses?
Consider now the Pareto distribution with the probability

density function (p.d.f.)

f ðx; uÞ ¼ ux�u�1; x > 1
where u > 0 is a shape parameter (the tail index). Let us modify
Eq. (2) by multiplying by f > 0 in order to receive exact 2nd-order
differential equation in the form

hðxÞ þ d

dx

f ðxÞ
h0ðxÞ

� �
¼ 0; (3)

where h(x) = S(x;u, b) f(x). Now, integrate Eq. (3) to obtain an
equation, which is solvable by quadrature, of the form

HðxÞ þ f ðxÞ
h0ðxÞ

� �
¼ C;

where H(x) is an antiderivative of h. Its form (under the condition
b 6¼ 1 � u) is:

HðxÞ ¼ u2
Z

1� u þ b�1

uxb�1

� �
x�u�1dx ¼ ux�uðx1�b�1Þ þ C1:

This yields several classes1 of solutions expressible in general in
the form of special functions (a non-elementary antiderivatives).
But this is an obstacle, since they can be hardly jointly analyzed
because of their transcendental nature.

These difficulties motivate us to study Eq. (2), by a different
approach, applicable for general density f and score function S̃. In
order to analyze it is more convenient to define some extra
variables
w ¼ ðx; y; zÞ :¼ ðt þ a; h; h0Þ; a 2 suppð f Þ ¼ fx 2 R; : f ðxÞ 6¼ 0g. Under
the assumption h0 6¼ 0 Eq. (2) is equivalent to the system
ẇ ¼ Wðx; y; zÞ, where W(x, y, z) = (1, z, C(x, z)), Cðx; zÞ ¼ z2 S þ
z d

dx lnð f ðxÞÞ and ðx; y; zÞ 2 D0, with D0 :¼ ½a; 1Þ�½a; 1Þ�Rnf0g.
We use this approach in details for (3), where a = 1, x � 1 is the

independent variable, h(x) � 1 is the unknown function with
h0(x) 6¼ 0 and ðb; uÞ 2 Rþ are parameters. In this way, (3) is
equivalent to the following set of autonomous ordinary differential
equations:

ẋ ¼ 1;
ẏ ¼ z;
ż ¼ ’ðx; zÞ;

8<: (4)

where

’ðx; zÞ ¼ � u þ 1

x
z þ u 1� u þ b�1

uxb�1

� �
z2;

and ðx; y; zÞ 2 D0.
In our setting any initial condition ðx0; y0; z0Þ 2 D0 defines a

unique smooth solution of (4)—and, hence, a unique differentiable
solution y = h(x) of (3). Each solution of (4) can be represented as a
smooth orbit {(x(t), y(t), z(t))} in R3 parameterized by t 2 R; see
Guckenheimer and Holmes (1986) for more details.

The (unique) orbit through a given point ðx; y; zÞ 2 D0 is tangent
to the vector (1, z, w(x, z)) at the point (x, y, z). Hence, an orbit
always flows forward in the direction of x and never ‘‘comes back’’
near any point already visited in the same orbit. More precisely,
there is no dense orbit of (4) in any open region of the phase space
R3. Hence, there cannot be topological mixing, which is one of the
necessary ingredients of chaotic dynamics (Guckenheimer and
Holmes, 1986; Hasselblatt and Katok, 2003).

For the fixed initial condition, we are able to obtain a monotonic
solution for t-score for almost all possible cases of parameters. The
t-score defines consistent estimator of tail parameter u. The choice
of parameter b is an issue of experience for the statistician/
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ecologists. Experienced choice of parameter b brings a proper
trade-off between robustness and efficiency (see Beran et al.,
2014).

2.1. The qualitative behavior of the solutions

2.1.1. The function y = h(x) is monotone

The graph of y = h(x) in the (x, y)-plane is determined by the
initial condition (x0, y0, z0) at t = t0. In particular, from (4) it follows
that z0 is the initial slope h0ðx0Þ ¼ ẏðt0Þ ¼ z0 of this solution. By the
continuity of the solutions of (4), since z = h0(x) 6¼ 0, then

signðz0Þ ¼ signðzðtÞÞ

for all t > 0; namely, the sign of z0 determines the (constant) sign of
ẏ ¼ z. Hence, y(t) is a monotone function of t, and, hence, any
solution h(x) of (3) is either an increasing or decreasing function for
every x. This is a very important property, since monotone
transformations of data are statistically optimal.

2.1.2. The set w�1(0)

In spite of h(x) being a monotone function, its graph could still
have a number of different shapes, it could be bounded or
unbounded, etc. Statistical reasons for having h a monotonic
function are as follows: if we have a differentiable inverse of h we
can compute the induced distribution after the transformation.
From the ecological point of view, it is as parsimonious a view on
ecological dynamics as one can consider.

In particular, the level set w�1(0) in the (x, z)-plane determines
the values of x where d2hðxÞ

dx2 ¼ 0 and, hence, where h(x) has an
inflection point. Moreover, the domain D0 of system (4) can be
continuously extended in order to include the plane z = 0. Hence, in
what follows we consider a continuous extension of the domain D0

given by

D1 :¼ ½1; 1Þ�½1; 1Þ�R

so that the set

M0 :¼ fðx; zÞ 2 ½1; 1Þ�R : z ¼ 0g � ’�1ð0Þ:

In order to study w�1(0), let us define the function

gðxÞ :¼ u þ 1

xðu�ðu þ b�1Þx1�bÞ
; (5)

and let gr(g) be the graph of z = g(x) in the domain
½1; 1Þ�R. Furthermore, let us define the following sets in the
parameter space (b, u):

V1 ¼ fðb; uÞ 2 Rþ : 0 < b < 1; u þ b�1 < 0g; (6)

V2 ¼ fðb; uÞ 2 Rþ : 0 < b < 1; u þ b�1 > 0g; (7)

V3 ¼ fðb; uÞ 2 Rþ : 1 < b < 2g; (8)

V4 ¼ fðb; uÞ 2 Rþ : 2 < bg; (9)

and their boundaries:

T1 ¼ fðb; uÞ 2 Rþ : u þ b�1 ¼ 0g; (10)

T2 ¼ fðb; uÞ 2 Rþ : b ¼ 1g; (11)

T2 ¼ fðb; uÞ 2 Rþ : b ¼ 2g: (12)

The sets Vk, k = 1, 2, 3, 4 and Tj, j = 1, 2, 3 are shown in panel (e) of
Fig. 1. From a statistical point of view, by choosing of system (4) we
decided for a specific form of dynamical system, driven by
autonomous system for t-scores of Pareto distribution. Here we
consider statistical learning based on t-score function with
monotonous transformation h. From an ecological point of view,
this was a convenient and parsimonious approach to model the
underlying dynamics for extreme value estimators under the
statistical constraints of Pareto tail, and a monotonous smooth
h. The usefulness of Lemma 1 and Fig. 1 is that we can use the
information on the nature of the set w�1(0)—as a function of
parameters b and u—to give some geometric insight into the
possible shapes of h(x) in terms of slope and inflection points. This
will be greatly illustrated in the next subsection.

Fact: The following statements hold, see Appendix C.1:

Lemma 1.

1. If (b, u) 2 V1, the set ’�1ð0Þ ¼ fM0; M1g consists of two branches,

where M1 ¼ grðgÞ. The set w�1(0) is qualitatively as in the sketch of

Fig. 1(a).

2. If (b, u) 2 T1, the set ’�1ð0Þ ¼ fM0; M1g consists of two branches,

where M1 is the graph of z ¼ uþ1
ux

. The set w�1(0) is qualitatively as

in the sketch of Fig. 1(b).

3. If (b, u) 2 V2, the set ’�1ð0Þ ¼ fM0; M1; M2g consists of three

branches, where M1 [ M2 ¼ grðgÞ. The set w�1(0) is qualitatively

as in the sketch of Fig. 1(c).

4. If (b, u) 2 T2, the set ’�1ð0Þ ¼ fM0g consists of the single branch

M0. The set w�1(0) is qualitatively as in the sketch of Fig. 1(d).

5. If (b, u) 2 V3, the set ’�1ð0Þ ¼ fM0; M1; M2g consists of three

branches where M1 [ M2 ¼ grðgÞ. The set w�1(0) is qualitatively

as in the sketch of Fig. 1(f).

6. If (b, u) 2 T3, the set ’�1ð0Þ ¼ fM0; M1; M2g consists of three

branches where M1 [ M2 is the graph of z ¼ xðuþ1Þ
ux2�ðuþ1Þx. The set

w�1(0) is qualitatively as in the sketch of Fig. 1(g).

7. If (b, u) 2 V4, the set ’�1ð0Þ ¼ fM0; M1; M2g consists of three

branches where M1 [ M2 ¼ grðgÞ. The set w�1(0) is qualitatively

as in the sketch of Fig. 1(h).

2.1.3. The shapes of h(x)

In this section we describe the geometric properties of the
function y = h(x). We compute different solutions of (4) for fixed—
and representative—values of (b, u) in each parameter regime. The
initial conditions are chosen of the form ðx0; y0; z0Þ ¼ ð1; 1; zðkÞ0 Þ,
with zðkÞ0 6¼ 0. For each value of zðkÞ0 , the graphs of y = hk(x) and
z ¼ h0kðxÞ correspond to the projection of the solution (xk(t), yk(t),
zk(t)) of (4) onto the (x, y) and (x, z)-planes, respectively.

Rather than computing each solution as mere integration from a
given initial condition, we obtain each desired orbit (xk(t), yk(t),
zk(t)) with high accuracy as an element of a family of solutions of a
well-posed boundary value problem—which is solved by continu-
ation in AUTO (Doedel et al., 2010); see also Doedel (2007). This
numerical procedure is explained in Appendix C.5.

Figs. 2 and 3 show the graphs of a set of selected solutions y = hk(x)
and z ¼ h0kðxÞ, where the index k > 0 if zðkÞ0 > 0, and k < 0 if
zðkÞ0 < 0. Panels (a1) and (a2) of Fig. 2 show the projection of each
solution to the (x, y) and (x, z)-plane, respectively, for (b, u) = (0.5,
0.4) 2 V1. Also shown in Fig. 2(a2) is the set ’�1ð0Þ ¼ fM0; M1g
(gray lines); compare with Fig. 1(a). Similarly, Figs. 2(b1)–(b2), 3(a1)–
(a2) and (b1)–(b2) show the corresponding graphs of y = hk(x) and
z ¼ h0kðxÞ (and the set w�1(0)) for (b, u) = (0.5, 0.7) 2 V2, (b, u) = (1.5,
0.7) 2 V3 and (b, u) = (3, 0.7) 2 V4, respectively.

Let us now describe in more details the properties of y = h(x) in
each scenario. In Fig. 2(a1), for (b, u) 2 V1, every solution y = hk(x)
with positive initial slope zðkÞ0 > 0 is a monotone increasing
function. From Fig. 2(a2), the corresponding derivative functions
z ¼ h0kðxÞ grow unbounded at certain finite values x1k < 1. Hence,



Fig. 1. Sketches of the set w�1(0) in the (x, z)-plane (in panels (a)–(d) and (f)–(h)) for different parameter values (b, u) in the regions shown in panel (e).

M. Stehlı́k et al. / Ecological Complexity 29 (2017) 10–29 13
limx ! x1
k
hkðxÞ ¼ 1. On the other hand, in Fig. 2(a1) every solution

y = hk(x) with negative initial slope zðkÞ0 < 0 is a monotone
decreasing function with bounded negative derivative—and,
hence, hk(x) eventually changes sign and takes negative values—
in fact, from Fig. 2(a2), the corresponding derivatives z ¼ h0kðxÞ
tend to M0 as x ! 1.

In Fig. 2(b1), for (b, u) 2 V2, there exists a threshold initial slope
z�0 > 0 such that if zðkÞ0 > z�0, the solution y = hk(x) grows unbounded
much as in the previous case for (b, u) 2 V1; see the curve h1 for
instance. However, if zðkÞ0 < z�0, the derivatives z ¼ h0kðxÞ in panel
(b2) start as increasing functions until they cross the curve M1

near certain point xa (see Appendix C.1)—hence, attaining a
maximum at the intersection point with M1—and decrease toward
M0. As a consequence, the corresponding functions y = hk(x) have
an inflection point and remain bounded; furthermore, each
solution y = hk(x) tends to a horizontal asymptote y ¼ y1k . On
the other hand, the behavior of solutions for zðkÞ0 < 0 for (b, u) 2 V2

is qualitatively as in V1.
In Fig. 3(a2), for (b, u) 2 V3, if zðkÞ0 > 0, the derivatives z ¼ h0kðxÞ

decay monotonously to M0 and fail to intersect the curve M2. On
the other hand, if zðkÞ0 < 0, the derivatives z ¼ h0kðxÞ may not be
monotonic functions—initially some of them are decreasing
functions that cross the curve M1 to start to increase; see for
instance h0�1; h0�2 and h0�3—but eventually all of them tend
monotonously toward M0. Therefore, in Fig. 3(a1), every curve
y = hk(x) tends to a horizontal asymptote y ¼ y1k ; in particular, h�1,
h�2 and h�3 have an inflection point at certain value x < xas where
z ¼ h0kðxÞ crosses the curve M1. For (b, u) 2 V4, in Fig. 3(b1),
virtually the same qualitative behavior of y = hk(x) is observed. In
this last scenario, the only minor difference is that all the solutions
y = hk(x) with negative initial slope z0

k < 0 have an inflection point
as h0k crosses the curve M1; see also Fig. 3(b2).

Finally, it remains to explore the shape of y = hk(x) when
parameters (b, u) cross from one open region to another in Fig. 1(e).
However, notice that, if (b, u) 2 T1, the set w�1(0) is qualitatively as
in the case for (b, u) 2 V1; one can expect y = h(x) and z = h0(x) to be
qualitatively as in Fig. 2(a1) and (a2), respectively. Similarly, if (b,
u) 2 T3, the set w�1(0) is qualitatively as in the case for (b, u) 2 V4

for x � 1; hence, the functions y = h(x) and z = h0(x) are qualita-
tively as in Fig. 3(b1) and (b2), respectively. Therefore, it only
remains to see the case when (b, u) 2 T2.

Fig. 4 shows the graphs of a set of solutions y = hk(x) and z ¼
h0kðxÞ for (b, u) = (2, 0.7) 2 T2. In panel (b), all the functions z ¼ h0kðxÞ
are monotonously decreasing (if k > 0) or increasing (if k < 0)
toward M0 as x ! 1. Thus, in panel (a), the functions y = hk(x)
increase (if k > 0) or decrease (if k < 0) monotonously, and
converge to a finite horizontal asymptote as x ! 1. In Figs. 2–4
the evolutions of transformations h(x) and their derivatives z = h(x)
are plotted. They, as a set form the statistical model ‘‘per se’’ in the
sense of McCullagh (2002). Here we consider that to each
transformation h a specific estimator and inference function
(t-score) are given (see also Jordanova et al., 2016).



Fig. 2. The graph of the functions y = hk(x) and z ¼ h0kðxÞ—for different initial conditions—for (b, u) = (0.5, 0.4) 2 V1 in panels (a1) and (a2), respectively, and for (b, u) 2 V2 in

panels (b1) and (b2), respectively.

Fig. 3. The graph of the functions y = hk(x) and z ¼ h0kðxÞ—for different initial conditions—for (b, u) = (1.5, 0.7) 2 V3 in panels (a1) and (a2), respectively, and for (b, u) = (0.5,

0.7) = (3, 0.7) 2 V4 in panels (b1) and (b2), respectively.

M. Stehlı́k et al. / Ecological Complexity 29 (2017) 10–2914
3. Application 1: Guanaco Glacier

A glacier is a volume of snow and ice of area larger than
0.01 km2, with evidences of flow, that is fed by solid water (snow,
hail or hoarfrost), that is transformed into ice by densification and
compaction, loosing mass mainly by melting, sublimation or
calving. The balance between the gains and losses during a period
of time (normally the hydrological year between April 1 and March
31 of the following year) is defined as Glacier Mass Balance (Kaser,
2003). For measuring this glacier mass balance, a number of stakes
or poles are installed over a glacier (location determined mainly by
the altimetry of the zone), where their protruding height is



Fig. 4. The graph of the functions y = hk(x) and z ¼ h0kðxÞ—for different initial conditions—for (b, u) = (2, 0.7) 2 T2 in panels (a) and (b), respectively.

Fig. 5. Geographical location of glaciers nearby Guanaco glacier, the three largest

are Guanaco, Estrecho and Ortigas 1; accounting for almost the 95% of the area of

the 7 studied ice bodies.
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repeatedly measured during each season together with the density
of the intervening mass. The changes are converted into water
equivalent by multiplying the pole heights by the density of the
snow or ice gained or losses during the surveyed period. The mass
balance per stake is then aggregated relative to the area of
influence of each one, as in the following equation (Kaser, 2003)

B ¼
X

i

bi
si

S
:

Guanaco glacier is located in the semi-arid region of Chile (latitude
29S) at an altitude range between 5000 and 5300 m above sea
level, with a surface area of 1.61 km2 in 2015 and a maximum
thickness of 120 m (Rabatel et al., 2011). This glacier, together with
other minor glaciers and glacierets (Fig. 5), is located close to
Pascua Lama (Gascoin et al., 2011), a gold mining project that was
interrupted in 2015. This mining project was monitoring these
glaciers for environmental purposes since 2002 with the main aim
of assessing possible impacts of their mining activities on the
glacier mass balance among several other variables.

3.1. Estimators of the EVI

It is of interest to consider the statistical behavior of maxima
Xn:n = max{X1, . . ., Xn}, where the sequence of independent random
variables X1, . . ., Xn has the common cumulative distribution
function F, that is Xi � F. The Fisher–Tippett–Gnedenko theorem
(de Haan and Ferreira, 2006) shows us that if there exists a
sequence of constants {an > 0} and bn such that

P
Xn:n�bn

an
�z

� �
! GðzÞ as n ! 1;

where G(z) is a non-degenerate distribution function, then G

corresponds to a Generalized Extreme Value distribution (GEV)

GðzÞ ¼ exp � 1 þ j
z�m
s

� �h i�1=j
� �

: (13)

This result quite resembles the Central Limit Theorem, but now
with the maximum of the sequence of random variables as the
statistic of interest, not the average. The proof of this theorem can
be found in Leadbetter et al. (1983), while a summary of some
results with weaker hypothesis (such as loss of independency or
stationarity) can be found in Coles (2001). This limiting cumulative
distribution function (c.d.f.) G(z) can be classified into three types
according to its shape parameter j (called also EVI), these are often
called Weibull (j < 0), Fréchet (j > 0) and Gumbell (j = 0) types. If,
for example, F is such that G is a Weibull type, then it is said that F
belongs to the Weibull Domain of Attraction of G, usually denoted
as F 2 DA(Ga). The shapes of these distributions for different
parameters are given on Fig. 6. The practical relevant range of the
EVI is ½� 1

2 ;
1
2	.

In particular, several practical applications can be found in the
case of the Weibull domain of attraction, for example, the ultimate
world record in a specific athletic event given today’s state of the
art (Einmahl and Magnus, 2008), the estimation of the efficiency
frontier in economics (Farrell, 1957) or the limit behavior of the
distance of two random points over a convex set (Mayer and
Molchanov, 2007). In general, the estimation of the finite right
endpoint is linked to estimate j < 0.



Fig. 6. Different behavior of the Generalized Extreme Value distribution according

to the value of its shape parameter, the EVI.
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If the previous theorem holds, then the conditional probability

PðX > u þ y j X > uÞ;

for large values of u, has a Generalized Pareto distribution (GP)

FðyÞ ¼ 1� 1 þ j
y

s
¯

� ��1=j
; (14)

where s
¯
¼ s þ jðu�mÞ, this limit c.d.f. can be also classified into

three types, often called, Beta (j < 0), Pareto (j > 0) and
Exponential (j = 0). This approach is known as Peaks over
threshold (POT) (Coles, 2001) and suits better in a case when
the whole data set is available and not only the maximum value of
a predefined block. However, it is necessary to choose an
appropriate threshold.

Several estimators were taken into account for this work. Here
Xi:n denotes the i-th order statistic of the sample X1, . . ., Xn, where
Xn:n = max{X1, . . ., Xn} These estimators depend on the number of
order statistics (k) which are used:


 An estimator based on the method of moments (Hosking and
Wallis, 1987), labeled as MOM:

ĵMOMðkÞ ¼ 1

2
1�m2

0ðkÞ
s2ðkÞ

� �
;

where:

m0ðkÞ ¼ 1

k

Xk

i¼1

½Xn�iþ1:n�Xn�k:n	;

s2ðkÞ ¼ 1

k�1

Xk

i¼1

½Xn�iþ1:n�Xn�k:n�m0ðkÞ	
2
:


 The method of probability weighted moments estimator
(Hosking and Wallis, 1987), labeled as PWM, enjoys good
properties in the small sample context (Furrer and Naveau,
2007):

ĵPWMðkÞ ¼ 2� m0ðkÞ
m0ðkÞ�2m1ðkÞ

;

where m0(k) is defined as in the previous estimator, and:

m1ðkÞ ¼ 1

kðk�1Þ
Xk

i¼1

ði�1Þ½Xn�iþ1:n�Xn�k:n	:


 Pickands’ estimator (Pickands, 1975), labeled as PICK, is
computed because it only needs four distinct order statistics
(which makes it a robust estimator), and is location and scale
invariant:

ĵPICKðkÞ ¼ 1

log2
log

Xn�rkþ1:n�Xn�2rkþ1:n

Xn�2rkþ1:n�Xn�4rkþ1:n

� �
;

where rk = bk/4c with b�c the floor function.

 A moment estimator (Dekkers and de Haan, 1989), labeled as m-

Hill:

ĵm-Hill ¼ Mð1Þn þ 1�1

2
1�ðM

ð1Þ
n Þ

2

Mð2Þn

0@ 1A�1

;

Mð jÞ
n ¼

1

k

Xk�1

i¼0

ðlogXn�i:n�logXn�k:nÞj:


 Falk’s estimator (Falk, 1995), labeled as n-Hill, defined as:

ĵn-Hill ¼
1

k

Xk�1

i¼1

½logðXn:n�Xn�i:nÞ�logðXn:n�Xn�k:nÞ	;

k 2 f1; . . .; n�1g:

3.2. Negative t-Hill estimator

The t-Hill estimator (Fabián and Stehlı́k, 2009) is a robust EVI
estimator which works in the Fréchet domain of attraction, defined
as:

ĵ ¼ �1 þ 1

k

Xk

i¼1

Xkþ1:n

Xi:n

( )�1

; where: k 2 f1; . . .; n�1g:

This one is a particular case of the HME (Beran et al., 2014),
which relates to the studied score function (1):

ĵ ¼ HðbÞn:k :¼

1

b�1

1

k

Xk

i¼1

U1�b
ik

  !�1

�1

24 35; if b > 1

1

k

Xk

i¼1

logðUikÞ; if b ¼ 1

8>>>>><>>>>>:
where Uik :¼ Xn�iþ1:n

Xn�k:n
.

In order to obtain a negative version of t-Hill estimator we
applied a procedure similar to the one introduced by Falk (Falk,
1995; de Haan and Ferreira, 2006), resulting in the following
estimator for the EVI, labeled as n-t-Hill:

ĵn-t-Hill ¼ 1� 1

k

Xk

i¼1

Xn:n�Xn�iþ1:n

Xn:n�Xn�k:n

( )�1

; where: k 2 f2; . . .; n�1g:

In more detail, we have been considering the fact that if X

belongs to the Weibull domain of attraction with j < 0, therefore, Y

defined as:

Y ¼ 1

x��X
(15)

belongs to the Fréchet domain of attraction, i.e., Y 2 DA(G�j)
(because �j > 0). In (15), x* denotes the unknown value of the
finite right endpoint, as an estimator of this value, the maximum
observation of the sample was used, which is recommended for
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j < � 1
2 (de Haan and Ferreira, 2006). The following asymptotic

results are detailed in Appendix A and proved in the Appendix:

ĵn-t-Hill �!
P

k ! 1
j;ffiffiffi

k
p
ðĵn-t-Hill�jÞ �!d

k ! 1
N 0; j2 ð1�jÞ2

ð1�2jÞ

  !
; j < �1

2
;

k�jðĵn-t-Hill�jÞ �!d
k ! 1

jð1�jÞWeibull 1; �1

j

� �
; 0 > j > �1

2
:

3.3. Computational Results

For this section, the chosen software was R (R Core Team, 2015),
the code with the implementation of the estimation of a partially
smooth c.d.f. was cordially shared by S. Müller and implemented in
this work. All previous estimators were implemented plus their
smoothed versions (Müller and Chhay, 2011), labeled with an ‘‘s’’
at the end of their names.

3.3.1. Small sample: Generalized Pareto distribution

In order to better contrast the results of Müller and Chhay
(2011), the same setup was studied, that is, n random samples
were generated from a Generalized Pareto (GP) distribution, with
the parameters

j ¼ f�1; �0:75; �0:5; �0:25; �0:1g;

m = 0, s = 1 with n = {16, 32, 64} and a fixed seed for the random
number generator (RNG) algorithm of value 200,905 the same that
was used in Müller and Chhay (2011). The results are summarized
in Table 1, which tries to resemble Müller and Chhay (2011,
Table 3).

A similar behavior can be seen among different values of n, but
there are more differences among them than in Müller and Chhay
(2011), therefore, results for n = {16, 32, 64} are shown and not
only for n = 32. Smoothed estimators show great advantage over
their non-smoothed counterparts, however, the lack of theoretical
results about their order of convergence or their behavior over
more general distributions, makes difficult to put smoothed
estimators over non-smoothed ones in a more general view.

In the large sample case, the estimation is way more reliable
than in the small one. One can observe here that all estimators are
converging to the original value of the simulation, however, it can
also be seen, the slower rate of convergence of both Negative t-Hill
(n-t-Hill) and Falk’s estimator (n-Hill) when j < �0.5, this result is
expected given the asymptotic results obtained in this work.

3.4. Robustness testing for Pareto tails

The robust properties of t-Hill estimator have already been
studied (Beran et al., 2014). They are explained by the fact that this
Table 1
Best estimator according to MSE for different sample sizes and EVI. Estimators ending

j n = 16 n = 32 

Best estimator(s) Range(s) of k Best estimator

�0.1 n-Hills k < 4 n-Hills 

MOMs k � 4 MOMs 

�0.25 n-Hills All k n-Hills 

�0.5 n-Hills All k n-Hills 

n-t-Hills 

�0.75 n-t-Hills All k n-t-Hills 

�1 n-t-Hills k � 10 n-t-Hills 

n-Hills k > 10 n-Hill 
estimator uses the harmonic mean instead of the Arithmetic one
on the data. For this experiment, the c.d.f. of the contaminated
samples is defined as:

FðxÞ ¼ ð1�aÞF1ðxÞ þ aF2ðxÞ;

where F1 is the c.d.f. of a transformed Pareto distribution (see
Eq. (15)) of parameter �j with j < 0, while F2 is similar but with
parameter �j/2.

Table 2 shows the relative efficiency of the estimators among
themselves, for each value of a = {0, 0.05, 0.1, 0.15, 0.2} and
j = {�0.1, �0.25, �0.5, �0.75}. The MSE and the percentage of
contribution of each estimator to the global MSE is computed. The
m-Hill estimator was left out due to its large MSE results. A starting
value of k = 10 was chosen for the computation of the percentage,
given the large instability of the estimation when almost all order
statistics are taken into account.

It can be stated from the previous table that both n-Hill and n-t-
Hill estimators are the only ones to perform better while the
contamination level grows when j > �0.75. Also, it can be seen
how all smoothed estimators are performing better than their non-
smoothed counterpart when j > �0.5.

A similar analysis can be found in Table 3, but now taking the
average of 20 order statistics around the optimal value of k for each
estimator, the optimal was chosen given its MSE. A notion of
relative stability can be obtained from these results if we make a
comparison with Table 2, because a decrease in the percentage
across the tables indicates a larger zone of reliable estimation of
the EVI. This topic is quite important, because the optimal value of
k is a topic of active research.

After a contamination both Negative t-Hill (n-t-Hill) and Falk’s
estimator (n-Hill) are almost invariant in their estimation, which
clearly shows the robust properties of these estimators in this case
of contamination. Estimation of the EVI on mass balance data of
several glaciers from Pascua Lama region, from 2002 to 2014 can be
found in Fig. 7. We can see from the values of several EVI estimators
that for a complete modeling of the EVI on mass balance data from
Pascualama region we need to consider several values of EVI, not
only one.

4. Application 2: Extremal snow loads

Understanding of snow extremes plays an important role for
both climatology and civil engineering. An approach combining
engineering and climatology to assess accidental snow loads on
structures is suggested in Sadovský et al. (2010). We use the data of
collection and analysis of snow loads in Slovakia carried out
recently (Sadovský et al., 2007, 2009). The long-term weekly
measurements of snow water equivalent (SWE) of snow cover at
rain-gauge stations are employed. Out of the rain-gauge stations,
 with ‘‘s’’ represent smoothed versions according to Müller and Chhay (2011).

n = 64

(s) Range(s) of k Best estimator(s) Range(s) of k

k < 4 n-Hills k < 4

k � 4 MOMs k � 4

All k n-Hills All k

k < 8 n-Hills k < 5

k � 8 n-t-Hills k � 5

All k n-t-Hills k � 15

n-Hill k > 15

k < 7 n-t-Hills k < 6

k � 7 n-Hill k � 6



Table 2
Percentages of relative efficiency (the lesser the better) of each estimator for different levels of contamination and EVI. The minimum value can be seen in bold.

j a n-Hill n-Hills n-t-Hill n-t-Hills MOM MOMs PWM PWMs PICK PICKs

�0.1 0 13.62 8.96 13.38 9.56 2.63 1.56 3.62 2.08 31.89 12.69

0.05 13.55 8.96 13.33 9.53 2.68 1.64 3.68 2.19 31.58 12.87

0.1 13.02 8.58 12.74 9.13 2.74 1.72 3.84 2.37 32.47 13.39

0.15 12.53 8.38 12.32 8.90 2.82 1.88 4.05 2.64 32.58 13.91

0.2 12.01 7.94 11.73 8.43 3.04 2.11 4.36 3.00 33.01 14.38

�0.25 0 9.50 2.48 9.71 3.30 4.34 2.21 5.91 3.14 43.01 16.39

0.05 9.11 2.33 9.25 3.13 4.36 2.38 5.97 3.35 43.34 16.79

0.1 8.56 2.15 8.68 2.91 4.57 2.65 6.23 3.70 43.32 17.23

0.15 7.68 1.92 7.84 2.65 4.71 3.10 6.53 4.30 43.15 18.13

0.2 6.85 1.68 6.98 2.37 5.04 3.66 7.01 5.02 42.56 18.85

�0.5 0 3.74 5.12 4.80 2.94 7.64 4.62 8.91 5.13 44.80 12.30

0.05 3.27 5.37 4.26 3.26 7.38 4.88 8.78 5.45 44.56 12.78

0.1 2.84 5.42 3.80 3.50 7.47 5.32 8.88 6.01 43.16 13.60

0.15 2.44 5.30 3.38 3.64 7.58 5.91 9.11 6.72 41.34 14.59

0.2 2.12 5.18 3.02 3.78 7.92 6.57 9.48 7.51 38.96 15.45

�0.75 0 1.31 22.60 2.18 16.12 6.47 8.30 6.50 7.59 23.11 5.81

0.05 1.19 22.41 2.04 16.21 6.39 8.37 6.50 7.75 22.84 6.30

0.1 1.21 21.75 2.04 15.99 6.47 8.51 6.65 8.01 22.40 6.98

0.15 1.25 20.54 2.09 15.38 6.74 8.70 7.01 8.34 22.08 7.87

0.2 1.36 19.17 2.23 14.64 7.17 8.94 7.46 8.73 21.47 8.84

Table 3
Percentages of relative efficiency (the lesser the better) of each estimator for different levels of contamination and EVI, taking into account 20 order statistics around the

optimal MSE value. The minimum value can be seen in bold.

j a n-Hill n-Hills n-t-Hill n-t-Hills MOM MOMs PWM PWMs PICK PICKs

�0.1 0 19.35 14.58 17.34 13.58 1.22 1.24 1.85 1.90 16.57 12.37

0.05 18.41 13.84 16.31 12.74 1.40 1.55 2.23 2.21 17.40 13.91

0.1 16.30 12.23 14.27 11.15 2.06 2.02 3.24 2.94 19.32 16.47

0.15 14.15 10.67 12.29 9.63 2.53 2.44 4.10 3.62 21.91 18.68

0.2 12.33 9.25 10.56 8.26 3.05 2.91 4.98 4.34 23.76 20.56

�0.25 0 13.95 4.71 11.51 4.35 2.63 2.70 3.95 4.04 30.41 21.76

0.05 11.18 3.50 8.78 3.05 3.22 3.48 4.94 4.83 31.78 25.25

0.1 8.11 2.33 6.02 1.91 4.43 4.45 6.70 6.05 32.83 27.17

0.15 5.31 1.40 3.72 1.08 5.06 5.09 7.70 6.85 34.90 28.89

0.2 3.43 0.83 2.22 0.61 5.50 5.49 8.33 7.47 36.31 29.80

�0.5 0 3.55 7.35 2.73 5.13 5.12 5.27 6.65 6.72 34.31 23.17

0.05 1.63 8.67 1.10 6.89 5.74 5.95 7.44 7.21 31.45 23.92

0.1 0.81 8.44 0.74 6.95 6.76 6.49 8.52 7.68 29.70 23.91

0.15 0.43 4.67 0.46 44.40 4.10 4.07 5.38 4.79 17.79 13.91

0.2 0.49 4.81 0.52 39.06 4.63 4.64 6.04 5.44 19.62 14.74

�0.75 0 1.00 31.47 1.14 19.10 4.52 4.43 5.05 4.77 17.83 10.68

0.05 0.84 29.52 1.09 20.05 4.87 5.00 5.50 5.30 16.86 10.97

0.1 1.06 26.15 1.32 19.38 6.00 5.42 6.84 5.68 17.74 10.41

0.15 1.13 23.42 1.41 18.60 6.26 6.18 7.13 6.47 18.37 11.03

0.2 1.18 21.69 1.44 18.14 6.45 6.69 7.39 6.94 18.99 11.09

Fig. 7. EVI computed over the mass balance data of several glaciers from Pascualama region, from 2002 to 2014.
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Table 4
Maximum likelihood estimators of the parameters of GPD (17).

Parameter Estimation Standard error

j 0.3325008 0.2979518

d 36.8023369 12.7791203
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meteorological stations were selected at which daily SWE values
have been recalculated using other climatological measurements,
like depth of snow cover, etc. (see Sadovský et al., 2009).
Preliminary statistical analysis has been made in Sadovský et al.
(2010) and in Stehlı́k et al. (2015).

The SWE records of winter seasons are well suited for the
assessment of the characteristic snow load on the ground, which is
defined as 98% quantile of a suitable extreme value distribution
fitted to the yearly snow load maxima. It is assumed that the
maximum is a member of the same population, however, with a
mean return period of say about 1000 years and more. Following
Sanpaolesi et al. (1998) the largest snow load value is exceptional if
the ratio k of the load to the characteristic snow load determined
without that value is greater than 1.5. The snow loads identified as
exceptional should be treated in accidental design situations as
accidental actions (loads), cf. Eurocode EN 1990 (see Sanpaolesi
et al., 1998).

The novelty of the approach for the assessment of the accidental
snow loads by Sadovský et al. (2010) can be briefly described. First
the k values in excess of 1.5 are identified. Then by the expertise of
climatologists based on the geomorphology of Slovakia, regions of
similar climate conditions for the occurrence of accidental snow
loads are determined (see Fig. 8). Within a given region, the values
of the empirical distribution function F restricted to the N ordered k

values in excess of 1.5 is calculated as

FðkiÞ ¼ i

NR þ 1
; (16)

where NR is the sum of winter seasons over all stations in the region
and i 2 (NR � N + 1, . . ., NR). The obtained empirical upper tail for k

ratios is approximated, e.g. by nonlinear regression analysis using
Pareto, exponential and Generalized Extreme Value (GEV)
distributions. The extremes of 0.999 and 0.9999 quantiles of the
distributions are of particular interest.

Under Generalized Pareto Distribution (GPD) with parameters
m, j and d we get the distribution with c.d.f.

1� 1 þ j
x�m
d

� ��1=j
; x > m� d

j
: (17)

Under Generalized Extreme Value (GEV) distribution with
parameters j, m and d we get the one with c.d.f.

exp � 1 þ j
x�m
d

� ��1=j
	 


; x > m� d
j
: (18)

We fit GPD to data from the companion paper (Sadovský et al.,
2010). Particularly, we study regions of Slovakia separately. We
refine the study of Regions 2 and the composite Region 4, within
Fig. 8. Regions of exceptional snow loads (Sadovský et al., 2012).
which the mountain basins are considered as one region. For the
exceptional snow loads and their corresponding k values in Region
1, treated in Sadovský et al. (2012), a statistical dependence on the
altitude is studied. The idea is to check the anticipated low
dependence of k values on the altitude inferred from their
definition, which comprises the altitude dependence already in
the characteristic values.

4.1. Region 1

Here we consider 63 data, maximal values of the exceptional
snow loads in Region 1, described in Stehlı́k et al. (2015), where a
subset of these data is considered. We assume that the observa-
tions are independent. Their mean excess plot shows that the
observed random variable has c.d.f. with Pareto tail. In order to fit
the GPD to the exceedances of the threshold we use maximum
likelihood approach, implemented in function gpd.fit in R. The
threshold that we choose is m = 97. The number of exceedances is
28. The estimated values of the parameter j and d of the c.d.f. (17)
are given in Table 4. The GPD pp-plot of the exceedances is given on
Fig. 9. It proves that we have made a good fit of the distribution of
the data over the threshold.

In the above estimation we used only the upper order statistics
of the observations in order to estimate the parameters. In this way
we lose information about the observed values below the
threshold 97. If we can estimate the c.d.f. in the entire range of
the data it always would be better. Therefore, now we make a GEV
fit of the data. The maximum likelihood approach is implemented
in function gev.fit in R. The estimated values of the parameters m, j
and d of the c.d.f. (18) are given in Table 5. Looking on the pp-plot
on Fig. 10 we can conclude that this GEV (18) fit with the
parameters, given in Table 5 is relatively good.

Both Hill on Fig. 11 and t-Hill plot on Fig. 12 confirmed the
above values of the EVI, which is positive in this region.

4.1.1. Fitting the distribution of k in Region 1

Here we consider component k—the ratio of the load to the
characteristic snow load determined without the largest snow load
value for Region 1. The number of observations is again 63. The
mean excess plot shows that the observed random variable has
GPD with negative parameter j. In order to fit this distribution we
use the maximum likelihood approach, implemented in function
gpd.fit in R. For the threshold we use the minimal observed value
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Fig. 9. GPD pp-plot of the maximal values of the exceptional snow loads in Region 1.



Table 5
Maximum likelihood estimators of the parameters of GEV (18).

Parameter Estimation Standard error

m 85.5114413 3.34024537

j 0.3345636 0.09937401

d 23.8166815 2.87468837

0.0 0. 2 0. 4 0. 6 0. 8 1.0

0.
0

0.
4

0.
8

F(M(n, k))

(k
−

1)
/n

Fig. 10. GEV pp-plot of the maximal values of the exceptional snow loads in Region
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Fig. 11. Hill plot of the maximal values of the exceptional snow loads in Region 1.
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Fig. 12. t-Hill plot of the maximal values of the exceptional snow loads in Region 1.

Table 6
Maximum likelihood estimators of the parameters j and d of the c.d.f. (18).

Parameter Estimation Standard error

j �0.4606775 0.17744269

d 0.2973319 0.06759829
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m = 1.5. The number of exceedances is 39. The estimated values of
other parameters j and d of the c.d.f. (18) are given in Table 6.

The pp-plot of the exceedances on Fig. 13 shows that our GPD fit
of the distribution of the data is very good. The same conclusion
could be made having in mind the similarity between the
theoretical and empirical c.d.fs.

We can compare the Negative Hill estimator, proposed by Falk
(1995) and the Negative t-Hill introduced in Section 3.3. Both, the
Negative Hill like plot on Fig. 14 and the Negative t-Hill like plot on
Fig. 15 confirmed the above values of the EVI.

4.2. Region 4

In contrast to the Region 1, where we have a relatively large
amount of data, in Region 4 we have only 17 observations.
Therefore, instead of using the functions gev.git and gpd.fit in R, we
use the regression in order to estimate the coefficients in these
distributions. This approach is considered in Stehlı́k et al. (2015)
with respect to the distribution of k, where these data are
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Fig. 13. GPD pp-plot of k in Region 1.
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Fig. 14. Hill plot of k in Region 1.
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Fig. 15. t-Hill plot of k in Region 1.

Table 7
The estimators of the coefficients in (21).

Parameter Estimation Standard error t value Pr(>|t|)

logl/j 15.4089 1.0102 15.25 4.08e�10

�1/j �3.2565 0.2013 �16.18 1.87e�10

Table 8
Estimators of the coefficients in GEV of the error term in (21).

Parameter Estimation Standard error

m 0.01233436 1.999988e�06

j 0.19224841 2.150387e�03

d �1.02813582 1.999988e�06
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Fig. 17. Normal qq-plot of the error terms in model (21).
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considered. In order to simplify the regression model, instead of
(17) we use the following definition for Pareto distribution

FðxÞ ¼ 1� l
x

� �1=j

; x > l: (19)

Under exponential c.d.f. we obtain

FðxÞ ¼ 1�e�
x�m

a ; x > m: (20)

The mean excess plot of the maximal values of the exceptional
snow loads in Region 4 shows that the observed random variable has
c.d.f. with Pareto tail. Here we compare three types of distributions
for modeling these data: exponential type (20), Pareto type (19) and
Generalized Extreme Value type (18). For the estimation of the
coefficients we used lm function in R and the results are compared
with the corresponding Hill and t-Hill estimators.

We start with the fitting of c.d.f. (19). Due to the fact that we have
relatively small amount of data we will use for the threshold the
minimal observed value. Having in mind that (20) is equivalent to

logð1�FðxÞÞ ¼ log l
j
� log x

j
; x > l

we make the following transformation of the data F1 = log(1 � cdf)
and X1 = logsort(M), where cdf are the values in the empirical c.d.f.
of the data and M denoted the Maximal snow load. The scatter plot
of F1 and X1 is given on Fig. 16. Therefore, we use the regression
model

F1 ¼ log l
j
�j�1

X1 þ ẽ; (21)
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Fig. 16. Maximal values of the exceptional snow loads in Region 4.
where ẽ is the random error. The estimators of the coefficients are
given in Table 7. Both are statistically significant. Residual standard
error of the model is 0.1841 on 14 degrees of freedom. We have the
multiple R2 = 0.9492 and adjusted R2 = 0.9456. The empirical value
of the Fisher characteristic is 261.7. Its p-value is 1.866e�10. The
degrees of freedom are correspondingly 1 and 14. The latter means
that this model is adequate. The normal qq-plot of the error terms
on Fig. 17 shows that the distribution of the error term in the last
regression is not a normal one. The GEV qq-plot on Fig. 18 shows
that the observed random variable is GEV distributed. The
estimators of the coefficients in (18) are given in Table 8. Now
we come back to the initial coefficients and obtain that
j = 0.3070782 and l = 113.4926. The qq-plot on Fig. 19 shows
the quality of this fit. The confidence intervals are wide then we
also apply GPD and GEV models.
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Fig. 18. GEV qq-plot of the error terms in model (21).
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Fig. 19. Exponential (see (19)) qq-plot of the maximal snow loads in Region 4.

Table 9
Estimators of the coefficients in GPD of the error term in (17).

Parameter Estimation Standard error

j 0.3319058 0.5106394

d 35.3014497 20.6332138

0.2 0. 4 0. 6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

F(M(n, k))

(k
−

1)
/n

Fig. 22. GPD pp-plot of the maximal values of the exceptional snow loads in Region

4, threshold 140.
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We can use Hill and t-Hill estimators in order to obtain the
estimated value of j. Depending on the number of upper order
statistics that are included in the estimators, the Hill and t-Hill
plots are given correspondingly in Figs. 20 and 21.

Now we will use the fact that the Pareto distribution appears
mainly in exceedances over high threshold. We use the function
gpd.fit in R, over the threshold 140 and obtain that the parameter m
in (17) is equal to 140, and the estimators of j and d are given in
Table 9. The qq-plot on Fig. 22 shows that this fit could be useful.
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Fig. 20. Hill plot of the maximal values of the exceptional snow loads in Region 4.

2 4 6 8 10 12 14 16

−
0.

1
0.

1
0.

3
0.

5

230 16 0 14 6 13 6 11 8 106

Order Statistics

xi
 (

C
I, 

p 
=

0.
95

)

Threshold

Fig. 21. t-Hill plot of the maximal values of the exceptional snow loads in Region 4.

Table 10
Estimators of the coefficients in GPD of the error term in (17).

Parameter Estimation Standard error

j �0.02649701 0.2509478

d 61.52754876 21.4716669
Now we use the same approach including all the values.
Although the sample size is only 17, we use the function gpd.fit in R,
over the threshold 105.99 and we obtain m̂ ¼ 105:99 in (17); ĵ and
d̂ are given in Table 10. In this case we have very wide confidence
intervals. The qq-plot is given on Fig. 23.

The differences in Pareto predictions show again the well
known fact that if we use a small amount of data and the
distribution of the observed variable is not exact Pareto, the Pareto
fit is not stable. Therefore we make GEV (18) fit of the data. The
estimated values of the parameters m, j and d of the c.d.f. are given
in Table 11. j still has wide confidence intervals, however m and d
are statistically significant. The pp-plot on Fig. 24 shows that this
fit is relatively good.

We make also exponential fit with c.d.f. (20). The minimal
observed value is 106. According to Balakrishnan and Basu (1996)
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Fig. 23. GPD pp-plot of the maximal values of the exceptional snow loads in Region

4, threshold 105.99.



Table 11
The estimators of the parameters in the GEV (18) model.

Parameter Estimation Standard error

m 136.1595290 8.0254567

j 0.3673421 7.0589241

d 28.3571790 0.2482327
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Fig. 24. GEV pp-plot of the maximal values of the exceptional snow loads in Region

4.
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Fig. 27. Mean excess plot of the maximal values of the exceptional snow loads in

Region 2.

Table 12
The estimated value of the parameter j and d of the c.d.f. (22).

Parameter Estimation Standard error

j 0.1905593 0.583140

d 14.0443152 9.705665
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this is the estimator for m. Again by Balakrishnan and Basu (1996),
the best estimator for scale a is

ba ¼ 17ðX
¯n
�106Þ

16
¼ 17ð165:9�106Þ

16
¼ 63:64375:

The corresponding exponential pp-plot, given on Fig. 25 shows that
again we observe a good fit.

4.3. Region 2

In Region 2 we have only 9 observations. Here we proceed with
fitting the distributions of the maximal snow loads and k in this
region.

The maximal values of the exceptional snow loads in Region
2 are given on Fig. 26. In sense of reproducible research we present
the data

m 144 86 88 110 84 101 80 89 97
Although we have very small amount of data their mean excess

plot on Fig. 27, shows that the observed random variable is
possibly to have a c.d.f. with Pareto tail. In order to fit the
Generalized Pareto Distribution (GPD) to the exceedances of the
threshold we use maximum likelihood approach, implemented in
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Fig. 25. Exponential pp-plot of the maximal values of the exceptional snow loads in

Region 4.
function gpd.fit in R. The threshold that we choose is the minimal
observation that is 85. The number of exceedances is 7. The
estimated value of the parameter j and d of the c.d.f.

1� 1 þ j
x�85

d

� ��1=j

; x > 85� d
j

(22)

are given in Table 12. Due to the small number of observations we
have wide confidence intervals. The pp-plot of the exceedances is
given on Fig. 28 the corresponding c.d.f. are in Fig. 29. It proves that
we have made a relatively good fit of the distribution of the data
over the threshold.
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Fig. 28. GPD pp-plot of the maximal values of the exceptional snow loads in Region

2.
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Fig. 29. Empirical c.d.f. and the corresponding estimated GPD c.d.f.

Table 13
The estimated values of the parameters m, j and d of the c.d.f. (18).

Parameter Estimation Standard error

m 87.6472012 3.2619087

j 0.4756571 0.3795467

d 8.2649512 3.0653720

Table 14
The estimated values of the parameters m, j and d of the c.d.f. (18).

Parameter Estimation Standard error

m 1.2868780 0.04976148

j 0.2239521 0.44424346

d 0.1177385 0.04137990
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Fig. 31. Empirical c.d.f. and the corresponding estimated GEV c.d.f.
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Fig. 32. GPD pp-plot of the values of k in Region 2.
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As we have already mentioned, if we can estimate the c.d.f. in all
range of the data it always would be better. Therefore now we
make a GEV fit of the data. More precisely we estimate the
parameters of the c.d.f. (18). We use the function gev.fit in R and
obtain the estimated values of the parameters m, j and d of the c.d.f.
(18). They are given in Table 13. Looking on Fig. 31 we can compare
the theoretical GEV c.d.f (18) with the parameters, given in
Table 13, with the empirical c.d.f. of the observed data. This
together with the pp-plot on Fig. 30 shows that this fit is better
than the GPD fit.

4.3.1. Fitting the distribution of k in Region 2

Here we consider component k - the ratio of the load to the
characteristic snow load determined without the largest snow load
value for Region 2. In sense of reproducible research we present the
data

k 1.72 1.60 1.46 1.42 1.32 1.29 1.24 1.22 1.17

The mean excess plot of the data shows that the observed
random variable has GEV distribution therefore we estimate the
parameters of the c.d.f. (18). The estimated values of the
parameters m, j and d of the c.d.f. (18) are given in
Table 14. Looking on Fig. 33 we can compare the theoretical
GEV c.d.f (18) with the parameters, given in Table 14, with the
empirical c.d.f. of the observed data. This together with the pp-plot
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Fig. 30. GEV pp-plot of the maximal values of the exceptional snow loads in Region

2.
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Fig. 33. Empirical c.d.f. and the corresponding estimated GEV c.d.f.
on Fig. 32 shows that although the confidence intervals of the
coefficients are wide this fit is good.

5. Conclusions

It is clear that oscillations of natural ecological systems are
measured imprecisely. To this imprecision contribute both non-
chaotical and chaotical dynamical systems. In the present paper we
explained non-chaotical dynamics of autonomous system of t-
scores, which underline statistical estimates of entropy. Other
source of contribution is switching between negative and positive
extreme value indexes. This is well visible from both applications,
Guanaco glacier in Chile and extreme snow loads in Slovakia. These
observations provide new illustrations of the decomposition in
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deterministic, stochastic and chaotic parts introduced in Stehlı́k
et al. (2016). Therein we studied the methane emission example
and we outlined the problem of deceptiveness regarding a complete
certainty of the climate change. Several other contributions to
imprecision can be made by fusion of several p-values (Baker, 2016).

More care should be taken in interpretations and the use of
various observations of the climate change as well as in their
methodologies and approaches.

Thus based on these new observations, we doubt the
possibilities of a 100% judgment (a 100% paradigm of expectations)
that the climate change has been caused solely by human effect.
The currently obtained consensus of 95–98% to justify a human
impact on the global climate change is probably the maximal
possible threshold.
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Appendix A. General information

Let X, X1, . . ., Xn be independent random variables with common
c.d.f. F. In the following, we assume that:

(A.1) F belongs to the maximum domain of attraction of the
Weibull distribution.

This assumption entails that F has a finite right endpoint x* and
that F has a negative EVI j < 0. Our goal is to estimate j. To this end,
the so-called n-t-Hill estimator is considered:

ĵ ¼ 1� 1

k

Xk�1

i¼0

Xn:n�Xn�i:n

Xn:n�Xn�k:n

  !�1

;

where X1,n � � � � � Xn,n are the ordered statistics associated with X1,
. . ., Xn and k 2 {1, . . ., n}.

Introducing the auxiliary random variable Z :¼ ðx��XÞ�1 and
denoting by G its c.d.f., extreme-value theory shows that G belongs
to the maximum domain of attraction of the Fréchet distribution.
Under (A.1), G has an infinite right endpoint and a positive EVI
given by �j. Additionally, the tail quantile function of Z defined by

Uð�Þ :¼ ð1�GÞ ð1=�Þ ¼ 1=ðx��ð1�FÞ�1ð1=�ÞÞ

is regularly varying with index �j, i.e.

UðtxÞ=UðtÞ ! x�j as t ! 1 for all x > 0: (A.1)

See Bingham et al. (1987) for a general account on regular
variation. In extreme-value theory, the second order condition
aims at quantifying the rate of convergence in (A.1):

(A.2) There exist r < 0 and some positive or negative function A

with A(t) ! 0 as t ! 1 such that

1

AðtÞ
xjUðtxÞ

UðtÞ �1

  !
! xr�1

r
as t ! 1 all x > 0:

See for instance (de Haan and Ferreira, 2006, p. 74).
Appendix B. Main properties

Our main result establishes an asymptotic representation for
the n-t-Hill estimator in terms of Weibull and Gaussian random
variables. To this end, recall that the Weibull distribution with
parameter u > 0 denoted by W(u) is defined by the c.d.f.

FuðxÞ ¼ 1�expð�xuÞ; x > 0:

Theorem 1. Suppose (A.2) holds and let u = min(1/2, � j). Let k ! 1
such as k/n ! 0 and kuAðn=kÞ ! l 2 R as n ! 1. Then, the following

asymptotic expansion holds

kuðjˆ�jÞ ¼ ku�1=2 jð1�jÞffiffiffi
1
p z ð1 þ oPð1ÞÞ þ kuþj ð1�jÞj zj ð1

þ oPð1ÞÞ þ lð1�jÞ
1�r�j

ð1 þ oPð1ÞÞ;

where z is a standard Gaussian random variable and zj is a random

variable following the Weibull distribution W(�j).

As a consequence, two different cases appear:

Corollary 1. Assume that the assumptions of Theorem 1 hold with

l = 0.

(i) If j<�1/2, then k1=2ðĵ�jÞ is asymptotically Gaussian centered

with variance j2(1 � j)2/(1 � 2j).
(ii) If j>�1/2, then k�jðĵ�jÞ converges in distribution to

(1 � j)2W(�1/j).

As a comparison, let us stress that the asymptotic distribution of
the n-Hill estimator defined by

j̃ ¼ 1

k

Xk�1

i¼1

logðXn:n�Xn�iþ1:nÞ�logðXn:n�Xn�k:nÞ

(see for instance de Haan and Ferreira, 2006, paragraph 3.6.2) has
been established only for j 2 (�1, �1/2) whereas Theorem 1 holds
for all j < 0. Under the assumptions of Theorem 1 and assuming
j 2 (�1, �1/2), it has been shown that

k1=2ðj̃�jÞ ¼ j z ð1 þ oPð1ÞÞ þ lj
rð1�rÞð1 þ jÞ ð1 þ oPð1ÞÞ;

where z is a standard Gaussian random variable, see de Haan and
Ferreira (2006, Theorem 3.6.4). It is thus possible to compare the
asymptotic behavior of ĵ and j̃ for j 2 (�1, �1/2). First, it is clear
that ĵ has a larger asymptotic variance (given by j2(1 � j)2/

(1 � 2j)) than j̃ (which is j2). It is possible to show that ĵ has a

smaller asymptotic bias (given by (1 � j)/(1 � r � j)) than j̃

(which is j/(r(1 � r)(1 + j))) for all j � j0 where

j0 ¼
1�r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�rÞð1�5rþ4r2�4r3Þ
p

2ðr2�r�1Þ . In particular, the asymptotic bias of

j̃ explodes when j approaches �1 while the asymptotic bias of ĵ
remains bounded.

Finally, note that, in case (ii) even when l = 0, ĵ has a negative
asymptotic bias given by (1 � j)jG(1 � j)k

j
. Nevertheless, this bias

can easily be estimated and corrected.

Appendix C. Proofs

C.1. Reasoning of Lemma 1

From the Implicit Function Theorem, for every z0 6¼ 0, x0 � 1, the
equation w(x, z) = 0 implicitly defines the function z = g(x) near
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(x0, z0), provided u�ðu þ b�1Þx1�b
0 6¼ 0. Hence, the graph of g(x)

determines branches of the set w�1(0).
If (b, u) 2 V1, let u = x1�b

. Then, the graph of
q(u) :¼ u � (u + b � 1)u is a straight line with positive slope
�(u + b � 1). Since q(0) = u > 0, then q(u) > 0 for every u � 0. It
follows that u � (u + b � 1)x1�b

> 0 and, hence, g(x) > 0 and its
graph on the positive (x, z)-plane consists of a single branch
M1. Moreover, one can readily check that limx ! 0þgðxÞ ¼ 1 and
limx !1g(x) = 0. In addition,

g0ðxÞ ¼ � ðu þ 1ÞFðxÞ
x2ðu�ðu þ b�1Þx1�bÞ2

; (C.1)

where

FðxÞ ¼ u þ ðb�2Þðu þ b�1Þxb�1: (C.2)

Since F(x) > 0 for every (b, u) 2 V1, then g(x) is a strictly monotone
decreasing function. In this way, the set w�1(0) consists of the two
branches M0 and M1, where M1 is defined as the graph of g(x),
that is, M1 ¼ fðx; zÞ : z ¼ gðxÞg. A qualitative sketch of the set
w�1(0) is shown in Fig. 1(a).

If (b, u) 2 T1, we have w(x, z) = z T1(x, z), with

T1ðx; zÞ ¼ � u þ 1

x
þ uz

� �
:

Hence, (adopting the same notation of V1) the set T�1
1 ð0Þ ¼ fM1g

where M1 is the hyperbola given by z = (u + 1)/(ux); see the
qualitative sketch in Fig. 1(b).

If (b, u) 2 V2, from (5) it follows that the line

xas ¼
u þ b�1

u

� � 1
b�1

is a vertical asymptote of w�1(0). Hence, the graph of z = g(x)
consists of two branches. Let M1 and M2 be the branches defined
for x < xas and x > xas, respectively. Then, it is easy to see that
g(x) > 0 for x < xas, and g(x) < 0 for x > xas. Moreover,
limx ! 0þgðxÞ ¼ 1 and limx !1g(x) = 0. Furthermore, from (C.1)
and (C.2) it follows that g(x) has a local minimum at
xmin ¼ ð2�bÞðuþb�1Þ

u ¼ ð2�bÞ
1

b�1xas < xas. On the other hand,
g0(x) > 0 for every x > xas; hence, M2 is defined by a strictly
increasing function. As a consequence, the graph of w�1(0) if (b,
u) 2 V2 is qualitatively as in Fig. 1(c).

The analysis for the other cases is similar.

C.2. Auxiliary lemmas

The following lemma provides an expansion of the t-Hill
estimator in terms of two random variables T1,n and T2,n which
derive its asymptotic distribution.

Lemma 2. Under (A.1), the n-t-Hill estimator can be rewritten as

1

1�ĵ
� 1

1�j
¼

T1;n� 1
1�j

1�T2;n
þ j

1�j
T2;n

1�T2;n
;

with

T2;n ¼
UðYn�k:nÞ
UðYn:nÞ

;

T1;n ¼
1

k

Xk�1

j¼0

UðYn�k:nÞ
UðYn�j:nÞ

;

and where Y1:n � � � � � Yn:n are ordered statistics associated with n

independent standard Pareto random variables.
The next lemma provides some consequences of the second order
condition (A.2).

Lemma 3. Under (A.2), there exists a function A0 asymptotically

equivalent to A such that, for all e > 0 there exists t0 > 0 such that,

for all t � t0 and x � 1,

xjUðtxÞ
UðtÞ ¼ 1 þ R1ðt; xÞA0ðtÞ; (C.3)

UðtÞ
UðtxÞ ¼ xj� xjþr�xj

r
A0ðtÞ�xjR0ðt; xÞA0ðtÞ þ R2ðt; xÞA2

0ðtÞ; (C.4)

with

jR0ðt; xÞj � exrþe;
jR1ðt; xÞj � e�1=r;
jR2ðt; xÞj � 4ðe2 þ 1=r2Þxj:

We first establish the asymptotic distribution of T1,n.

Lemma 4. Let k ! 1 such that k/n ! 0 as n ! 1. Then, under (A.2),
k�jT1;n!

d
zj where zj is a random variable following the Weibull

distribution W(�1/j).

Second, we focus on the asymptotic distribution of T2,n.

Lemma 5. Let k ! 1 such that k/n ! 0 as n ! 1. Then, under (A.2),

T2;n¼
d 1

1�j
þ sðjÞk�1=2zð1 þ oPð1ÞÞ þ tðj; rÞAðn=kÞð1 þ oPð1ÞÞ;

where z is a standard Gaussian random variable, tðj; rÞ ¼ 1
ð1�jÞð1�r�jÞ

and sðjÞ ¼ j

ð1�jÞ
ffiffiffiffiffiffiffiffiffi
1�2j
p .

C.3. Proofs of auxiliary lemmas

Proof of Lemma 2. Introducing Zj ¼ ðx��XjÞ�1 for j = 1, . . ., n, the n-
t-Hill estimator can be rewritten as

1

1�ĵ
¼d 1

k

Xk�1

j¼0

Xn:n�Xn�j:n

Xn:n�Xn�k:n
¼

1
k

Pk�1
j¼0

Zn�k:n
Zn�j:n
� Zn�k:n

Zn:n

1� Zn�k:n
Zn:n

:

Besides, fZjgj¼1;...;n
¼d fUðYjÞgj¼1;...;n

where Y1, . . ., Yn is a sample of
independent random variables from a standard Pareto distribu-
tion. Therefore,

1

1�ĵ
¼d T2;n�T1;n

1�T1;n

and the conclusion follows.

Proof of Lemma 3. From de Haan and Ferreira (2006, Theorem
B.2.18), it is possible to control the rest in the convergence (A.2):
There exists a function A0 asymptotically equivalent to A such that,
for all e > 0 there exists t0 > 0 such that, for all t � t0 and x � 1,

jR0ðt; xÞj :¼ 1

A0ðtÞ
xjUðtxÞ

UðtÞ �1

  !
� xr�1

r

�����
������exrþe:

Letting R1(t, x) :¼ (x
r � 1)/r + R0(t, x), it follows that

xjUðtxÞ
UðtÞ ¼ 1 þ R1ðt; xÞA0ðtÞ;

with |R1(t, x)| � e � 1/r for all t � t0, x � 1 and e <� r. The first part
(C.3) of the lemma is proved.



M. Stehlı́k et al. / Ecological Complexity 29 (2017) 10–29 27
It straightforwardly follows that

UðtÞ
UðtxÞ ¼ xj�xjR1ðt; xÞA0ðtÞ þ xjR2

1ðt; xÞA2
0ðtÞ

1 þ R1ðt; xÞA0ðtÞ

¼ xj�xj xr�1

r
A0ðtÞ�xjR0ðt; xÞA0ðtÞ þ xjR2

1ðt; xÞA2
0ðtÞ

1 þ R1ðt; xÞA0ðtÞ
:

Finally, letting R2ðt; xÞ :¼ xjR2
1ðt; xÞ=ð1 þ R1ðt; xÞA0ðtÞÞ, one has

jR2ðt; xÞj�2ðe2 þ 1=r2Þxj=ð1�ðe�1=rÞjA0ðtÞjÞ:

Since, for t large enough, |A0(t)| � 1/(2e � 2/r), the second part
(C.4) of the lemma follows.

Proof of Lemma 4. Applying expansion (C.3) of Lemma 3 with t ¼

Yn�k:n!
P 1 (see de Haan and Ferreira, 2006, Corollary 2.2.2) and

x = Yn:n/Yn�k:n � 1 yields

Yn:n

Yn�k:n

� �j UðYn:nÞ
UðYn�k:nÞ

¼ 1 þ OPðA0ðYn�k:nÞÞ ¼ 1 þ OPðAðYn�k:nÞÞ

¼ 1 þ oPð1Þ;

in view of de Haan and Ferreira (2006, page 75). As a consequence
of Rényi representation, Yn:n=Yn�k:n¼

d
Y�k:k where Y�k:k is the maxi-

mum of a k-sample from a standard Pareto distribution. We thus
have T1;n¼

d ðY�k:kÞ
jð1 þ oPð1ÞÞ. Moreover, the extreme-value theorem

states that Y�k:k=k converges in distribution to the extreme-value
distribution F1 (see for instance Embrechts et al., 1987,
Table 3.4.2) with c.d.f. c1(x) = exp(�1/x), x > 0. It is therefore
easily seen that k�jT1;n!

d
F

j
1 ¼ Wð�1=jÞ.

Proof of Lemma 5. Applying expansion (C.4) of Lemma 3 with t ¼

Yn�k:n!
P 1 (see de Haan and Ferreira, 2006, Corollary 2.2.2) and

x = Yn�j:n/Yn�k:n � 1, j = 0, . . ., k � 1 yields the expansion

T2;n ¼ T3;n�T4;n�T5;n þ T6;n (C.5)

with

T3;n ¼
1

k

Xk�1

j¼0

Yn�j:n

Yn�k:n

� �j

;

T4;n ¼
A0ðYn�k:nÞ

r
1

k

Xk�1

j¼0

Yn�j:n

Yn�k:n

� �jþr

�
Yn�j:n

Yn�k:n

� �j
  !

;

T5;n ¼ A0ðYn�k:nÞ
1

k

Xk�1

j¼0

Yn�j:n

Yn�k:n

� �j

R0 Yn�k:n;
Yn�j:n

Yn�k:n

� �
;

T6;n ¼ A2
0ðYn�k:nÞ

1

k

Xk�1

j¼0

R2 Yn�k:n;
Yn�j:n

Yn�k:n

� �
:

The four terms are studied separately. In view of Rényi
representation, ðYn�j:n=Yn�k:nÞj¼0;...;k�1

¼d ðY�k�j:kÞj¼0;...;k�1
where

Y�1 ; . . .; Y�k is a sample of independent random variables from the
standard Pareto distribution and Y�1:k� � � � �Y�k:k are the associated
ordered statistics. Consequently, T3,n can be rewritten as

T3;n¼
d 1

k

Xk�1

j¼0

ðY�k�j:kÞ
j ¼ 1

k

Xk

j¼1

ðY�j Þ
j;

Remarking that EððY�1Þ
jÞ ¼ 1=ð1�jÞ and varððY�1Þ

jÞ ¼ s2ðjÞ, the
central limit theorem entails that

T3;n ¼
1

1�j
þ k�1=2sðjÞzð1 þ oPð1ÞÞ; (C.6)

where z is a standard Gaussian random variable. Let us now focus
on T4,n. First, remark that

A0ðYn�k:nÞ ¼ AðYn�k:nÞð1 þ oPð1ÞÞ ¼ Aðn=kÞð1 þ oPð1ÞÞ;
in view of de Haan and Ferreira (2006, page 75). Second, using the
same arguments as previously yields

1

k

Xk�1

j¼0

1

r
UðYn�j:nÞ
UðYn�k:nÞ

� �jþr

�
UðYn�j:nÞ
UðYn�k:nÞ

� �j
  !

¼d 1

k

Xk�1

j¼0

1

r
ððY�j Þ

jþr�ðY�j Þ
jÞ:

The laws of large numbers shows that this quantity converges in
probability to t(j, r) and therefore

T4;n ¼ tðj; rÞAðn=kÞð1 þ oPð1ÞÞ: (C.7)

From the definition of T5,n, it follows that, for all e 2 (0, 1 � j � r),

jT5;nj�Aðn=kÞð1 þ oPð1ÞÞe
1

k

Xk�1

j¼0

UðYn�j:nÞ
UðYn�k:nÞ

� �jþrþe

¼d Aðn=kÞð1 þ oPð1ÞÞe
1

k

Xk�1

j¼0

ðY�j Þ
jþrþe

¼ Aðn=kÞð1 þ oPð1ÞÞeEððY�j Þ
jþrþeÞ

¼ Aðn=kÞð1 þ oPð1ÞÞ
e

1�ðj þ r þ eÞ :

Letting e ! 0 yields

T5;n ¼ oPðAðn=kÞÞ: (C.8)

Similarly, from the definition of T5,n, it follows that, for all e 2 (0,
1 � j � r),

jT6;nj�A2ðn=kÞð1 þ oPð1ÞÞ4ðe2 þ 1=r2Þ 1

k

Xk�1

j¼0

UðYn�j:nÞ
UðYn�k:nÞ

� �j

¼d A2ðn=kÞð1 þ oPð1ÞÞ4ðe2 þ 1=r2Þ 1

k

Xk�1

j¼0

ðY�j Þ
j

(C.9)

¼ A2ðn=kÞð1 þ oPð1ÞÞ4ðe2 þ 1=r2ÞEððY�j Þ
jÞ

¼ oPðAðn=kÞÞ:
(C.10)

Collecting (C.5)–(C.10) proves the result.

C.4. Proofs of main results

Proof of Theorem 1. In view of Lemma 4, T2,n = oP(1) and therefore
Lemma 2 entails

1

1�j
ˆ
� 1

1�j
¼ T1;n�

1

1�j
þ j

1�j
T2;n

� �
ð1 þ oPð1ÞÞ

¼ k�1=2sðjÞzð1 þ oPð1ÞÞ þ j
1�j

kjzjð1 þ oPð1ÞÞ

þ tðj; rÞAðn=kÞð1 þ oPð1ÞÞ;

in view of Lemmas 4 and 5. Let u = min(1/2, � j). It follows that

ku j
ˆ�j

ð1�j
ˆ Þð1�jÞ

¼ ku�1=2sðjÞzð1 þ oPð1ÞÞ þ j
1�j

kuþjzjð1 þ oPð1ÞÞ

þ ltðj; rÞð1 þ oPð1ÞÞ;

under the assumption k
u
A(n/k) ! l as n ! 1. As a consequence,

ĵ ! Pj and therefore

kuðjˆ�jÞ ¼ ku�1=2sðjÞð1�jÞ2zð1 þ oPð1ÞÞ þ kuþjð1�jÞjzjð1 þ oPð1ÞÞ

þ lð1�jÞ2tðj; rÞð1 þ oPð1ÞÞ;

and the result is proved.
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Proof of Corollary 1. Two cases arise. If j < �1/2 then u = 1/2 and
thus k1=2ðĵ�jÞ is asymptotically Gaussian with mean l(1 � j)2t(j,
r) and variance s2(j)(1 � j)4. Conversely, if j > �1/2, then u =� j
and k�jðĵ�jÞ converges in distribution to l(1 � j)2t(j,
r) + (1 � j)jW(�1/j) where W(�1/j) is the Weibull distribution
with shape parameter �1/j.

C.5. Explanation for continuation in AUTO (Doedel, 1981)

In order to compute a family of solutions of a three-dimensional
system

x
˙
¼ f ðxðtÞÞ (C.11)

we consider a function u : ½0; 1	 7! R3 satisfying a rescaled version
of (C.11) given by the differential equation

u
˙
¼ Tf ðuðtÞÞ; (C.12)

where f stands for the vector field defined by the system (4) and
T > 0 is the integration time (also known as the ‘‘period’’) of an
orbit segment of f. Note that in (C.12), the period T appears as an
explicit parameter and the actual integration time over an orbit
segment is always 1. Geometrically, the function u represents a
unique orbit segment fuðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ 2 R3j 0�t�1g provid-
ed that suitable boundary conditions are posed at one or both end
points u(0) and u(1). In our case, we consider

uð0Þ ¼ ð1; m; nÞ; (C.13)

where m, n are dummy parameters that determine the ‘initial’
coordinates y0 and z0, respectively, of a given solution.

The boundary value problem (C.12) and (C.13) defines a (m, n,
T)-dependent family of orbit segments. For any fixed (m, T) = (m0,
T0) we have a uniquely defined one-parameter family of orbit
segments (parameterized by n) with fixed integration time T0 and
fixed initial coordinates x(0) = 1, y(0) = m0. In order to compute this
n-family by continuation in AUTO (Doedel, 1981; Doedel et al.,
2010), we need to specify an initial orbit segment un0

that satisfies
(C.12) and (C.13) for some fixed n = n0. To this end, a possible choice
is to take advantage of the continuous extension of (4) to the line
z = 0 and consider the constant solution—i.e., a trivial orbit
segment—u(t) � (1, 0, 0) of (C.12) with T = 0; continuation in T

for fixed u(0) = (1, 0, 0) up to T = T0 yields the desired initial orbit
segment u0 satisfying (C.12) and (C.13) for m0 = 0 and n0 = 0. A
collection of orbits segments is then obtained by fixing T = T0 and
continuing u0 in m up to a user-defined value; in our case, the
stopping condition is m = 1. Finally, the desired family of orbit
segments is obtained by allowing n to vary while keeping T = T0 and
m = 1 fixed. In this way, each orbit segment in this family
corresponds to a solution fxðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ 2 R3j 0�t�T0g of
(4) with initial condition (x0, y0, z0) = (1, 1, n).
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Stehlı́k, M., Potocký, R., Waldl, H., Fabián, Z., 2010. On the favourable estimation of
fitting heavy tailed data. Comput. Stat. 25, 485–503.
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