Glaciares de Chile
- Glaciares del Volcán Melimoyu
- Glaciares del Nevado de Queulat
- Glaciares del Volcán Mentolat
- Glaciares del Volcán Cay
- Glaciares del Volcán Macá
- Glaciares del Volcán Hudson
- Glaciar Erasmo
- Glaciar San Rafael
- Glaciar San Quintín
- Campo de Hielo Norte
- Glaciar Nef
- Glaciar Colonia
- Lago Cachet II
- Glaciar Steffen
- Glaciares del Monte San Lorenzo
- Glaciar Jorge Montt
- Glaciar Lucía
- Glaciar Los Moscos
- Glaciar Bernardo
- Glaciar O’Higgins
- Glaciar Chico
- Campo de Hielo Sur
- Campo de Hielo Sur
- Glaciar Témpanos
- Glaciar Pío XI
- Glaciar Viedma
- Glaciar Perito Moreno
- Glaciar Dickson
- Glaciar Olvidado
- Glaciar Grey
- Glaciar Amalia
- Glaciar Pingo
- Glaciar Tyndall
- Glaciar Balmaceda
- Isla Desolación
- Glaciares de la Isla Santa Inés
- Seno Gabriel
- Glaciar Schiaparelli
- Glaciar Marinelli
- Fiordo Parry
- Cordillera Darwin
- Glaciar Garibaldi
- Glaciar Roncagli
- Glaciares Isla Hoste
Antártica
"Glacier shrinkage and negative mass balance in the Chilean Lake District (40ºS)"
Rivera, A., F., Bown, G. Casassa, C. Acuña and J. Clavero (2005) : “Glacier shrinkage and negative mass balance in the Chilean Lake District (40ºS) ” Hydrological Sciences Journal, 50(6), 963 – 974.
Resumen / Abstract.
Ice-capped volcanoes of the Chilean Lake District have shown significant glacier retreat during recent decades, probably in response to tropospheric warming and precipitation decrease. Volcán Mocho-Choshuenco (39°55?S, 72°02W) is one of the main active volcanoes in this part of the country. A mass balance programme was initiated on its southeastern glacier in 2003, in view of its representative conditions as an ice body that is presumably not affected by current volcanic activity. The glaciers of this volcano have been retreating and shrinking in recent decades; by 2003 there had been a reduction of 40% of the original area of 28.4 km2 in 1976. A maximum decrease of area was observed in the most recently analysed period, a rate of 0.45 km² year-1 between 1987 and 2003. The glacier average net mass balance of 2003/04 yielded –0.88 m w.e. (water equivalent) per year (±0.18), with an average net accumulation and ablation of 2.59 and –3.47 m w.e. per year, respectively. This is the first direct measurement of glacier mass balance in southern Chile, where very little is known about glacier variations and glacier–volcano interactions.